Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo mình nghĩ thì đề thiếu là tam giác ABC vuông tại A nhé!
Bạn xem lại đề!:)
a: AC=8cm
b: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔBAD=ΔBHD
Suy ra: DA=DH
Xét ΔADE vuông tại A và ΔHDC vuông tại H có
DA=DH
\(\widehat{ADE}=\widehat{HDC}\)
Do đó: ΔADE=ΔHDC
c: Ta có: BE=BC
nên B nằm trên đường trung trực của CE(1)
Ta có: DE=DC
nên D nằm trên đường trung trực của EC(2)
Ta có: ME=MC
nên M nằm trên đường trung trực của EC(3)
Từ (1), (2) và (3) suy ra B,D,M thẳng hàng
a,Xét ▲ABC vuông tại A
theo định lý pytago ta có
BC²=AB²+AC² mà AB=6;BC=10
=>10²=6²+AC²
=>AC²=(10-6)²
=>AC²=4²
=>AC=4
b,Vì g BDC là góc ngoài đỉnh D của ▲BAD
=>g BDC=g ADB +g BAD (1)
vì g BDE là góc ngoài đỉnh D của ▲BDH
=>g BDE=gDBH+gBHD (2)
ta có +)gABD=gDBH(BD là tia phân giác của gA)
+)gBAD=gBHD(=90°) (3)
Từ (1),(2),(3)=>gBDC=gBDE
Xét ▲BDE và ▲BDC có:
gABD=gDBH(cmt)
Cạnh BD chung
gBDE=gBDC
=>▲BDE=▲BDC(g.c.g)
=>DE=DC(2 canh tương ứng)
Xét ▲ADE và ▲HDC có:
gBAD=gBHD(cmt)
DE=DC(cmt)
gADE=gHDC(2 góc đối đỉnh)
=>▲ADE=▲HDC
2. GTLN
có A= x - |x|
Xét x >= 0 thì A= x - x = 0 (1)
Xét x < 0 thì A=x - (-x) = 2x < 0 (2)
Từ (1) và (2) => A =< 0
Vậy GTLN của A bằng 0 khi x >= 0
Bài1:
\(C=x^2+3\text{|}y-2\text{|}-1\)
Với mọi x;ythì \(x^2>=0;3\text{|}y-2\text{|}>=0\)
=>\(x^2+3\text{|}y-2\text{|}>=0\)
Hay C>=0 với mọi x;y
Để C=0 thì \(x^2=0\) và \(\text{|}y-2\text{|}=0\)
=>\(x=0vày-2=0\)
=>\(x=0và.y=2\)
Vậy....
\(\left(\dfrac{-5}{13}\right)^{2017}\cdot\left(\dfrac{13}{5}\right)^{2016}=\left(\dfrac{-5}{13}\right)\cdot\left(-\dfrac{5}{13}\right)^{2016}\cdot\left(\dfrac{13}{5}\right)^{2016}=\left(\dfrac{-5}{13}\right)\cdot\left(\dfrac{5}{13}\right)^{2016}\cdot\left(\dfrac{13}{5}\right)^{2016}=\left(-\dfrac{5}{13}\right)\cdot\left[\left(\dfrac{5}{13}\right)^{2016}\cdot\left(\dfrac{13}{5}\right)^{2016}\right]=\left(-\dfrac{5}{13}\right)\cdot1^{2016}=\left(-\dfrac{5}{13}\right)\cdot1=-\dfrac{5}{13}\)
A B C M 1 2
Theo bất đẳng thức của tam giác, ta có:
\(AM-MB< AB\left(1\right)\)
\(AM-MC< AC\left(2\right)\)
Lấy \(\left(1\right)-\left(2\right)\), ta có:
\(\left(AM-MB\right)-\left(AM-MC\right)< AB-AC\)
\(AM-MB-AM+MC< AB-AC\)
\(-MB+MC< AB-AC\)
\(MB-MC< AB-AC\left(đfcm\right)\)
thanks bn nk