K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2022

a: \(A=m^6-6m^5+10m^4+m^3+98m-26\)

\(=m^6-m^4+m^3-6m^5+6m^3-6m^2+11m^4-11m^2+11m-6m^3+6m-6+17m^2+81m-20\)

\(=m^3-6m^2+11m-6+\dfrac{17m^2+81m-20}{m^3-m+1}\)

\(C=m^3-6m^2+11m-6=\left(m-1\right)\left(m-3\right)\left(m-2\right)\) luôn chia hết cho 6

b: Để đa thức dư bằng 0 thì 17m^2+81m-20=0

=>m=-5 hoặc m=4/17

21 tháng 10 2018

undefinedundefined

15 tháng 10 2022

 

a: \(A=m^6-6m^5+10m^4+m^3+98m-26\)

\(=m^6-m^4+m^3-6m^5+6m^3-6m^2+11m^4-11m^2+11m-6m^3+6m-6+17m^2+81m-20\)

\(=m^3-6m^2+11m-6+\dfrac{17m^2+81m-20}{m^3-m+1}\)

b: \(C=m^3-6m^2+11m-6=\left(m-1\right)\left(m-3\right)\left(m-2\right)\) luôn chia hết cho 6

b: Để đa thức dư bằng 0 thì 17m^2+81m-20=0

=>m=-5 hoặc m=4/17

17 tháng 10 2022

Bài 4: 

=>x(x^2+1)=0

=>x=0

Bài 5: 

=>\(3n^3+n^2+9n^2-1-4⋮3n+1\)

=>\(3n+1\in\left\{1;-1;2;-2;4;-4\right\}\)

hay \(n\in\left\{0;-1;1\right\}\)

Bài 3: 

\(a^3+b^3+c^3-3bac\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)

31 tháng 10 2022

Bài 2:

a: =x^2+x+1/4+3/4

=(x+1/2)^2+3/4>=3/4

Dấu = xảy ra khi x=-1/2

b: =-(x^2-x-2)

=-(x^2-x+1/4-9/4)

=-(x-1/2)^2+9/4<=9/4

Dấu = xảy ra khi x=1/2

c: =x^2-4x+4-3

=(x-2)^2-3>=-3

Dấu = xảy ra khi x=2

20 tháng 11 2022

Bài 3:

\(\dfrac{f\left(x\right)}{g\left(x\right)}=\dfrac{x^4+ax^2+b}{x^2-3x+2}\)

\(=\dfrac{x^4-3x^3+2x^2+3x^3-9x^2+6x+\left(a+7\right)x^2-3x\left(a+7\right)+2\left(a+7\right)+x\left(-6+3a+7\right)+b-2a-14}{x^2-3x+2}\)

Để đây là phép chia hết thì 3a+1=0 và b-2a-14=0

=>a=-1/3; b=2a+14=-2/3+14=40/3

22 tháng 10 2017

Bài 1: a,\(y^3-10y^2+25y=y\left(y^2-10y+25\right)\)

=\(y\left(y-5\right)^2\)

b,\(3x^2-6xy+3y^2-12z^2=3\left(x^2-2xy+y^2-4z^2\right)\)

=\(3\left[\left(x-y\right)^2-\left(2z\right)^2\right]=3\left(x-y+2z\right)\left(x-y-2z\right)\)

Bài 2:\(x^2-4x+5=\left(x^2-4x+4\right)+1\)

=\(\left(x-2\right)^2+1\)

\(\left(x-2\right)^2\ge0\)với mọi x

Nên \(\left(x-2\right)^2+1\ge1\)với mọi x

Do đó GTNN của A =1 \(\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)

24 tháng 10 2017

thank's bạn nhìu lắmvui

4 tháng 10 2017

Bài 1 :

a)Tìm giá trị nhỏ nhất của biểu thức

A = 2x2 - 4x + 8

\(=\left(\sqrt{2}x\right)^2-2.\sqrt{2}x.\sqrt{2}+\left(\sqrt{2}\right)^2+4\)

\(=\left(\sqrt{2}x+\sqrt{2}\right)^2+4\)

Ta có : \(\left(\sqrt{2}x+\sqrt{2}\right)^2\ge0\) \(\Rightarrow\left(\sqrt{2}x+\sqrt{2}\right)^2+4\ge4>0\)

=> A > 4

=> Amin = 4 \(\Leftrightarrow\left(\sqrt{2}x+\sqrt{2}\right)^2=0\)

\(\Leftrightarrow\sqrt{2}x+\sqrt{2}=0\)

\(\Leftrightarrow x=-1\)

4 tháng 10 2017

Bài 1:

a) \(A=2x^2-4x+8\)

\(=2\left(x^2-2x+4\right)=2\left(x-2\right)^2\)

Xét \(2\left(x-2\right)^2\ge0\)

\(\Rightarrow Min_A=0\Leftrightarrow x=2\)

b) \(B=n^5-5n^3+4n\)

\(=n\left(n^4-5n^2+4\right)\)

\(=n\left(n^4-n^2-4n^2+4\right)\)

\(=n\left[n^2\left(n^2-1\right)-4\left(n^2-1\right)\right]\)

\(=n\left[\left(n^2-4\right)\left(n^2-1\right)\right]\)

\(=n\left[\left(n-2\right)\left(n+2\right)\left(n-1\right)\left(n+1\right)\right]\)

\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)

Xét \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\) là 5 số nguyên liên tiếp

\(\Rightarrow\)\(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮2;3;4;5\)

\(\Rightarrow\)\(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮120\)

\(\Rightarrow\)\(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮30\)