K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\widehat{yOz}=180^0-70^0=110^0\)

b: \(\widehat{tOt'}=\widehat{tOy}+\widehat{t'Oy}=\dfrac{1}{2}\left(\widehat{xOy}+\widehat{yOz}\right)=\dfrac{1}{2}\cdot180^0=90^0\)

21 tháng 3 2017

đề bài hơi kì. Xem lại đề đc k

16 tháng 6 2016

Hỏi đáp Toán

16 tháng 6 2016

Mệnh đề, tập hợp

8 tháng 4 2021

Đăng vào phần lớp 8 ấy, thế này kh ai giải cho đâu.

a) Ta có: \(\widehat{ABF}+\widehat{ABC}=180^0\)(hai góc kề bù)

\(\widehat{ACE}+\widehat{ACB}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔBAC cân tại A)

nên \(\widehat{ABF}=\widehat{ACE}\)

Xét ΔABF và ΔACE có 

AB=AC(ΔABC cân tại A)

\(\widehat{ABF}=\widehat{ACE}\)(cmt)

BF=CE(gt)

Do đó: ΔABF=ΔACE(c-g-c)

Suy ra: AF=AE(Hai cạnh tương ứng)

Xét ΔAFE có AF=AE(Cmt)

nên ΔAFE cân tại A(Định nghĩa tam giác cân)

a: Trên cùng một nửa mặt phẳng bờ chứa tia Ox, ta có: \(\widehat{xOz}< \widehat{xOy}\)

nên tia Oz nằm giữa hai tia Ox và Oy

=>\(\widehat{xOz}+\widehat{yOz}=\widehat{xOy}\)

hay \(\widehat{yOz}=40^0\)

b: Ta có: tia Oz nằm giữa hai tia Ox và Oy

mà \(\widehat{xOz}=\widehat{yOz}\)

nên Oz là tia phân giác của góc xOy

a: Vì OA<OB

nên điểmA nằm giữa O và B

mà OA=1/2OB

nên A là trung điểm của OB

b: BI=AB/2=3cm

=>OI=9cm

10 tháng 10 2017

 

Gọi M là trung điểm BC

+) vecto AI=vecto IG=vecto GM

+) vecto AI=1/3vecto AM=1/3(vecto CM-vecto CA)=2/3vecto CB-1/3vecto CA

+) vecto AK=1/5vecto AB=1/5vecto CB-1/5vectoCA

+) vecto CK=vecto CA+vecto AK=vecto CA+1/5vecto AB

=vecto CA+1/5vecto CB-1/5vecto CA=1/5vecto CB+4/5vecto CA

+)vecto CI=vecto CA+vecto AI= vecto CA+1/3vecto AM

=vecto CA+1/3vecto AC+1/6vecto CB=2/3vecto CA+1/6vecto CB

b/

+) vecto CI =2/3vecto CA+1/6vecto CB=5(4/30vecto CA+1/30vecto CB)

+) vecto CK=6(4/30vecto CA+1/30vecto CB)

do đó 1/5vecto CI=1/6vecto CK

Nên C,I,K thẳng hàng.

 

17 tháng 7 2017

ai giup mik nha mik tich cho

17 tháng 7 2017

Ta có hình vẽ:

A B C D E H I K

a/ Xét hai tam giác vuông ABD và ACE có:

AB = AC (tam giác ABC cân tại A)

A: góc chung

=> tam giác ABD = tam giác ACE.

b/ Ta có: BD và CE là đường cao của tam giác ABC

Mà BD cắt CE tại H

=> H là trực tâm của tam giác ABC

=> AH là đường cao còn lại của tam giác ABC

Vì tam giác ABC cân

Nên AH cũng là đường trung trực của BC.

c/ Ta có: tam giác ABD = tam giác ACE (Cmt)

=> AD = AE (hai cạnh t/ư)

=> tam giác ADE cân tại A

=> góc ADE = góc AED.

Ta có: \(\widehat{ADE}+\widehat{AED}+\widehat{A}=180^0\)

hay \(2.\widehat{ADE}=180^0-\widehat{A}\) (Vì \(\widehat{ADE}=\widehat{AED}\) )

=> \(\widehat{ADE}=\dfrac{180^0-\widehat{A}}{2}\)

Ta có: tam giác ABC cân tại A

=> góc B = góc C.

Ta có: \(\widehat{A}+\widehat{ABC}+\widehat{ACB}=180^0\)

hay \(2.\widehat{ACB}=180^0-\widehat{A}\) (Vì \(\widehat{ABC}=\widehat{ACB}\))

=> \(\widehat{ACB}=\dfrac{180^0-\widehat{A}}{2}\)

Ta có: \(\widehat{ADE}=\dfrac{180^0-\widehat{A}}{2}\)

\(\widehat{ACB}=\dfrac{180^0-\widehat{A}}{2}\)

=> \(\widehat{ADE}=\widehat{ACB}\)

Mà hai góc này ở vị trí slt

=> DE // BC (đpcm).