Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2.
A = -3/5 + ( -2/5 + 2 )
A = -3/5 + ( -2/5 + 10/5 )
A = -3/5 + 8/5
A = 5/5
A = 1
--------------------------------------------------------
B = 3/7 + ( -1/5 + -3/7 )
B = 3/7 + ( -7/35 + -15/35 )
B = 3/7 + ( -22/35 )
B = 15/35 + ( -22/35 )
B = -1/5
-----------------------------------------------------
C = ( -5/24 + 0,75 + 7/12 ) : ( -2 . 1/8 )
C = ( -5/24 + 3/4 + 7/12 ) : ( -1/4 )
C = 9/8 : ( -1/4 )
C = 9/8 . ( -4 )
C = -9/2
Bài 3 .
a) 4/7 - x = 1/2 . x + 2/7
<=> -x - x = 1/2 - 4/7 + 2/7
<=> -2x = 3/14
<=> x = 3/14 . ( -1/2 )
<=> x = -3/28
Vậy x = -3/28
b) x : 3 1/5 = 1 1/2
<=> x : 16/5 = 3/2
<=> x = 3/2 . 16/5
<=> x = 24/5
Vậy x = 24/5
c) x . 3/4 = -1 5/8
<=> x . 3/4 = -13/8
<=> x = -13/8 . 4/3
<=> x = -13/6
Vậy x = -13/6
\(\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)...\left(1-\dfrac{1}{99}\right)=\dfrac{1}{2}\cdot\dfrac{2}{3}...\dfrac{98}{99}=\dfrac{1}{99}\)
Chọn A
Bài 1)
Ta có:
A = \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+\dfrac{1}{8^2}\)
A < \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}\)
A < \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}\)
A < \(1-\dfrac{1}{8}\) = \(\dfrac{7}{8}\) < 1
Vậy A < 1
Bài 2)
Ta thấy:
\(\dfrac{2011}{2012+2013}< \dfrac{2011}{2012};\dfrac{2012}{2012+2013}< \dfrac{2012}{2013}\)
\(\Rightarrow\) \(\dfrac{2011}{2012+2013}+\dfrac{2012}{2012+2013}< \dfrac{2011}{2012}+\dfrac{2012}{2013}\)
\(\Rightarrow\) \(\dfrac{2011+2012}{2012+2013}< \dfrac{2011}{2012}+\dfrac{2012}{2013}\)
\(\Rightarrow\) A < B
Bài 3)
Ta có:
B = \(\left(1-\dfrac{1}{1}\right)\left(1-\dfrac{1}{3}\right).\left(1-\dfrac{1}{4}\right)......\left(1-\dfrac{1}{20}\right)\)
= \(0.\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)......\left(1-\dfrac{1}{20}\right)\)
= 0
Bài 3)
Ta có:
A = \(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+.....+\dfrac{1}{2^{2012}}\)
\(\Rightarrow\) 2A = \(2\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+.....+\dfrac{1}{2^{2012}}\right)\)
\(\Rightarrow\) 2A = \(2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^{2011}}\)
\(\Rightarrow\) 2A - A = \(\left(2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^{2011}}\right)\)-\(\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+.....+\dfrac{1}{2^{2012}}\right)\)
\(\Rightarrow\) A = 2 - \(\dfrac{1}{2^{2012}}\) = \(\dfrac{2^{2013}-1}{2^{2012}}\)
Bài 5)
\(\pi\) + 5 \(⋮\) \(\pi\) - 2
\(\Leftrightarrow\) \(\pi\) - 2 + 7 \(⋮\) \(\pi\) - 2
\(\Leftrightarrow\) 7 \(⋮\) \(\pi\) - 2 (vì \(\pi\) - 2 \(⋮\) \(\pi\) - 2)
\(\Leftrightarrow\) \(\pi\) - 2 \(\in\) Ư(7)
\(\Leftrightarrow\) \(\pi\) - 2 \(\in\) \(\left\{\pm1;\pm7\right\}\)
\(\Leftrightarrow\) \(\pi\) \(\in\) \(\left\{1;3;-5;9\right\}\)
Ta có: \(B=\left(3\dfrac{10}{99}+4\dfrac{11}{99}-5\dfrac{8}{299}\right)\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{6}\right)\)
\(B=\left(3\dfrac{10}{99}+4\dfrac{11}{99}-5\dfrac{8}{299}\right)\left(\dfrac{3}{6}-\dfrac{2}{6}-\dfrac{1}{6}\right)\)
\(B=\left(3\dfrac{10}{99}+4\dfrac{11}{99}-5\dfrac{8}{299}\right)\left(\dfrac{3}{6}+\dfrac{-2}{6}+\dfrac{-1}{6}\right)\)
\(B=\left(3\dfrac{10}{99}+4\dfrac{11}{99}-5\dfrac{8}{299}\right)\left(\dfrac{3+\left(-2\right)+\left(-1\right)}{6}\right)\)
\(B=\left(3\dfrac{10}{99}+4\dfrac{11}{99}-5\dfrac{8}{299}\right).0=0\)
Tick mk vs !
B = (3\(\dfrac{10}{99}\)+4\(\dfrac{11}{99}\)-5\(\dfrac{8}{299}\)).0
B = 0
bài 1:
a) \(4\dfrac{1}{2}x:\dfrac{5}{12}=0,5\) ; b)\(1,5+1\dfrac{1}{4}x=\dfrac{2}{3}\)
\(\dfrac{9}{2}x:\dfrac{5}{12}=\dfrac{1}{2}\) \(\dfrac{3}{2}+\dfrac{5}{4}x=\dfrac{2}{3}\)
\(\dfrac{9}{2}x\) \(=\dfrac{1}{2}.\dfrac{5}{12}\) \(\dfrac{5}{4}x=\dfrac{2}{3}-\dfrac{3}{2}\)
\(\dfrac{9}{2}x\) \(=\dfrac{5}{24}\) \(\dfrac{5}{4}x=\dfrac{-5}{6}\)
\(x\) \(=\dfrac{5}{24}:\dfrac{9}{2}\) \(x=\dfrac{-5}{6}:\dfrac{5}{4}\)
\(x\) \(=\dfrac{5}{108}\) \(x=\dfrac{-2}{3}\)
c) Cho mình hỏi x ở đâu vậy ???
d)\(\left(x-5\right):\dfrac{1}{3}=\dfrac{2}{5}\) e)\(\left(4,5-2x\right):\dfrac{3}{4}=1\dfrac{1}{3}\)
\(\left(x-5\right)\) \(=\dfrac{2}{5}.\dfrac{1}{3}\) \(\left(\dfrac{9}{2}-2x\right):\dfrac{3}{4}=\dfrac{4}{3}\)
\(x-5\) \(=\dfrac{2}{15}\) \(\dfrac{9}{2}-2x\) =\(\dfrac{4}{3}.\dfrac{3}{4}\)
\(x\) \(=\dfrac{2}{15}+5\) \(\dfrac{9}{2}-2x=1\)
\(x\) \(=\dfrac{77}{15}\) \(2x=\dfrac{9}{2}-1\)
f) \(\left(2,7x-1\dfrac{1}{2}x\right):\dfrac{2}{7}=\dfrac{-21}{7}\) \(2x=\dfrac{7}{2}\)
\(\left(\dfrac{27}{10}x-\dfrac{3}{2}x\right):\dfrac{2}{7}=-3\) \(x=\dfrac{7}{2}:2\)
\(\left[x\left(\dfrac{27}{10}-\dfrac{3}{2}\right)\right]=-3.\dfrac{2}{7}\) \(x=\dfrac{7}{4}\)
\(x.\dfrac{6}{5}=\dfrac{-6}{7}\)
\(x=\dfrac{-6}{7}:\dfrac{6}{5}\)
\(x=\dfrac{-5}{7}\)
bài 2:
Theo bài ra ta có :\(\dfrac{a}{27}=\dfrac{-5}{9}=\dfrac{-45}{b}\)
\(\Rightarrow9a=27.\left(-5\right)\Rightarrow a=\dfrac{27.\left(-5\right)}{9}=-15\)
\(\Rightarrow\left(-5\right)b=\left(-45\right).9\Rightarrow b=\dfrac{\left(-45\right).9}{-5}=81\)
Vậy \(a=-15;b=81\)
5\(\dfrac{8}{17}\):x + (-\(\dfrac{1}{17}\)) : x + 3\(\dfrac{1}{17}\) : 17\(\dfrac{1}{3}\)= \(\dfrac{4}{17}\)
\(\dfrac{93}{17}\).\(\dfrac{1}{x}\) + (-\(\dfrac{1}{17}\)) .\(\dfrac{1}{x}\) +\(\dfrac{3}{17}\)= \(\dfrac{4}{17}\)
\(\dfrac{1}{x}\).\(\dfrac{92}{17}\)=\(\dfrac{1}{17}\)
\(\dfrac{1}{1.4}\)+\(\dfrac{1}{4.7}\)+\(\dfrac{1}{7.10}\)+...+\(\dfrac{1}{x.\left(x+3\right)}\)=\(\dfrac{6}{19}\)
Bài 1:
a) \(\dfrac{1}{n\left(n+1\right)}=\dfrac{1}{n}-\dfrac{1}{n+1}\)
Quy đồng \(VP\) ta được:
\(VP=\dfrac{1}{n}-\dfrac{1}{n+1}\)
\(\Rightarrow VP=\dfrac{n+1}{n\left(n+1\right)}-\dfrac{n}{n\left(n+1\right)}\)
\(\Rightarrow VP=\dfrac{n+1-n}{n\left(n+1\right)}=\dfrac{1}{n\left(n+1\right)}\)
\(\Rightarrow VP=VT\)
Vậy \(\forall n\in Z,n>0\Rightarrow\dfrac{1}{n\left(n+1\right)}=\dfrac{1}{n}-\dfrac{1}{n+1}\) (Đpcm)
b) \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
\(=1-\dfrac{1}{10}\)
\(=\dfrac{9}{10}\)
Bài 3:
a) \(\dfrac{1}{n}-\dfrac{1}{n+1}=\dfrac{1+1}{n\left(n+1\right)}-\dfrac{n}{n\left(n+1\right)}=\dfrac{1}{n\left(n+1\right)}\)
b) A=\(\dfrac{1}{2}.\dfrac{1}{3}+\dfrac{1}{3}.\dfrac{1}{4}+\dfrac{1}{4}.\dfrac{1}{5}+\dfrac{1}{5}.\dfrac{1}{6}+\dfrac{1}{6}.\dfrac{1}{7}+\dfrac{1}{7}.\dfrac{1}{8}+\dfrac{1}{8}.\dfrac{1}{9}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}\)
\(=\dfrac{1}{2}-\dfrac{1}{9}\)
\(=\dfrac{7}{18}\)
B=\(\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}+\dfrac{1}{110}+\dfrac{1}{132}\)
\(=\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}+\dfrac{1}{10.11}+\dfrac{1}{11.12}\)
\(=\dfrac{1}{5}-\dfrac{1}{12}\)
\(=\dfrac{7}{60}\)
Bài 1:
a)
\(\dfrac{x-1}{9}=\dfrac{8}{3}\\ \Leftrightarrow\dfrac{x-1}{9}=\dfrac{24}{9}\\ \Leftrightarrow x-1=24\\ x=24+1\\ x=25\)
b)
\(\left(\dfrac{3x}{7}+1\right):\left(-4\right)=\dfrac{-1}{8}\\ \dfrac{3x}{7}+1=\dfrac{-1}{8}\cdot\left(-4\right)\\ \dfrac{3x}{7}+1=\dfrac{1}{2}\\ \dfrac{3x}{7}=\dfrac{1}{2}-1\\ \dfrac{3x}{7}=\dfrac{-1}{2}\\ 3x=\dfrac{-1}{2}\cdot7\\ 3x=\dfrac{-7}{2}\\ x=\dfrac{-7}{2}:3\\ x=\dfrac{-7}{6}\)
c)
\(x+\dfrac{7}{12}=\dfrac{17}{18}-\dfrac{1}{9}\\ x+\dfrac{7}{12}=\dfrac{5}{6}\\ x=\dfrac{5}{6}-\dfrac{7}{12}\\ x=\dfrac{1}{4}\)
d)
\(0,5x-\dfrac{2}{3}x=\dfrac{7}{12}\\ \dfrac{1}{2}x-\dfrac{2}{3}x=\dfrac{7}{12}\\ x\cdot\left(\dfrac{1}{2}-\dfrac{2}{3}\right)=\dfrac{7}{12}\\ \dfrac{-1}{6}x=\dfrac{7}{12}\\ x=\dfrac{7}{12}:\dfrac{-1}{6}\\ x=\dfrac{-7}{2}\)
e)
\(\dfrac{29}{30}-\left(\dfrac{13}{23}+x\right)=\dfrac{7}{46}\\ \dfrac{29}{30}-\dfrac{13}{23}-x=\dfrac{7}{46}\\ \dfrac{277}{690}-x=\dfrac{7}{46}\\ x=\dfrac{277}{690}-\dfrac{7}{46}\\ x=\dfrac{86}{345}\)
f)
\(\left(x+\dfrac{1}{4}-\dfrac{1}{3}\right):\left(2+\dfrac{1}{6}-\dfrac{1}{4}\right)=\dfrac{7}{46}\\ \left(x-\dfrac{1}{12}\right):\dfrac{23}{12}=\dfrac{7}{46}\\ x-\dfrac{1}{12}=\dfrac{7}{46}\cdot\dfrac{23}{12}\\ x-\dfrac{1}{12}=\dfrac{7}{24}\\ x=\dfrac{7}{24}+\dfrac{1}{12}\\ x=\dfrac{3}{8}\)
g)
\(\dfrac{13}{15}-\left(\dfrac{13}{21}+x\right)\cdot\dfrac{7}{12}=\dfrac{7}{10}\\ \left(\dfrac{13}{21}+x\right)\cdot\dfrac{7}{12}=\dfrac{13}{15}-\dfrac{7}{10}\\ \left(\dfrac{13}{21}+x\right)\cdot\dfrac{7}{12}=\dfrac{1}{6}\\ \dfrac{13}{21}+x=\dfrac{1}{6}:\dfrac{7}{12}\\ \dfrac{13}{21}+x=\dfrac{2}{7}\\ x=\dfrac{2}{7}-\dfrac{13}{21}\\ x=\dfrac{-1}{3}\)
h)
\(2\cdot\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|-\dfrac{3}{2}=\dfrac{1}{4}\\ 2\cdot\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{1}{4}+\dfrac{3}{2}\\ 2\cdot\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{7}{4}\\ \left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{7}{4}:2\\ \left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{7}{8}\Rightarrow\left[{}\begin{matrix}\dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{7}{8}\\\dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{-7}{8}\end{matrix}\right.\\ \dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{7}{8}\\ \dfrac{1}{2}x=\dfrac{7}{8}+\dfrac{1}{3}\\ \dfrac{1}{2}x=\dfrac{29}{24}\\ x=\dfrac{29}{24}:\dfrac{1}{2}\\ x=\dfrac{29}{12}\\ \dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{-7}{8}\\ \dfrac{1}{2}x=\dfrac{-7}{8}+\dfrac{1}{3}\\ \dfrac{1}{2}x=\dfrac{-13}{24}\\ x=\dfrac{-13}{24}:\dfrac{1}{2}\\ x=\dfrac{-13}{12}\)
i)
\(3\cdot\left(3x-\dfrac{1}{2}\right)^3+\dfrac{1}{9}=0\\ 3\cdot\left(3x-\dfrac{1}{2}\right)^3=0-\dfrac{1}{9}\\ 3\cdot\left(3x-\dfrac{1}{2}\right)^3=\dfrac{-1}{9}\\ \left(3x-\dfrac{1}{2}\right)^3=\dfrac{-1}{9}:3\\ \left(3x-\dfrac{1}{2}\right)^3=\dfrac{-1}{27}\\ \left(3x-\dfrac{1}{2}\right)^3=\left(\dfrac{-1}{3}\right)^3\\ \Leftrightarrow3x-\dfrac{1}{2}=\dfrac{-1}{3}\\ 3x=\dfrac{-1}{3}+\dfrac{1}{2}\\ 3x=\dfrac{1}{6}\\ x=\dfrac{1}{6}:3\\ x=\dfrac{1}{18}\)
\(.2.\)
\(a.\)
\(2x+\dfrac{1}{2}=-\dfrac{5}{3}\)
\(\Rightarrow2x=-\dfrac{5}{3}-\dfrac{1}{2}=-\dfrac{13}{6}\)
\(\Rightarrow x=-\dfrac{13}{6}:2=-\dfrac{13}{12}\)
Vậy : \(x=-\dfrac{13}{12}\)
\(b.\)
\(\dfrac{1}{7}-\dfrac{3}{5}x=\dfrac{3}{5}\)
\(\Rightarrow\dfrac{3}{5}x=\dfrac{1}{7}-\dfrac{3}{5}=-\dfrac{16}{35}\)
\(\Rightarrow x=-\dfrac{16}{35}:\dfrac{3}{5}=-\dfrac{16}{21}\)
Vậy : \(x=-\dfrac{16}{21}\)
\(c.\)
\(\dfrac{3}{4}x+\dfrac{1}{2}=-\dfrac{3}{5}\)
\(\Rightarrow\dfrac{3}{4}x=-\dfrac{3}{5}-\dfrac{1}{2}=-\dfrac{11}{10}\)
\(\Rightarrow x=-\dfrac{11}{10}:\dfrac{3}{4}=-\dfrac{22}{15}\)
Vậy : \(x=-\dfrac{22}{15}\)
\(d.\)
\(-\dfrac{2}{15}-x=-\dfrac{3}{10}\)
\(\Rightarrow x=-\dfrac{2}{15}-\left(-\dfrac{3}{10}\right)=\dfrac{1}{6}\)
Vậy : \(x=\dfrac{1}{6}\)
Ta có:
\(T=\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}+1\right)\left(\dfrac{1}{4}+1\right)...\left(\dfrac{1}{99}+1\right)\)
\(=\dfrac{3}{2}.\dfrac{4}{3}.\dfrac{5}{4}.\dfrac{6}{5}.\dfrac{7}{6}...\dfrac{99}{98}.\dfrac{100}{99}\)
\(=\dfrac{3.4.5.6.7...99.100}{2.3.4.5.6...98.99}\)
\(=\dfrac{\left(3.4.5.6.7...99\right).100}{2.\left(3.4.5.6...98.99\right)}\)
\(=\dfrac{100}{2}=50\)
Vậy \(T=50\)
\(T=\left(\dfrac{1}{2}+1\right).\left(\dfrac{1}{3}+1\right).\left(\dfrac{1}{4}+1\right).....\left(\dfrac{1}{99}+1\right)\)
\(T=\dfrac{3}{2}.\dfrac{4}{3}.\dfrac{5}{4}.\dfrac{6}{5}.....\dfrac{100}{99}=\dfrac{100}{2}=50\)