Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. x^3-19x-30
=x^3-25x+6x-30
=x(x^2-25)+6(x-5)
=x(x+5)(x-5)+6(x-5)
=(x-5)(x^2+5x+6)
=(x-5)(x^2+2x+3x+6)
=(x-5)[x(x+2)+3(x+2)]
=(x-5)(x+2)(x+3)
2.
a + b + c = 0
<=> (a + b + c)² = 0
<=> a² + b² + c² + 2(ab + bc + ca) = 0
<=> a² + b² + c² = -2(ab + bc + ca) ------------(1)
CẦn chứng minh:
2(a^4 + b^4 + c^4) = (a² + b² + c²)²
<=> 2(a^4 + b^4 + c^4) = a^4 + b^4 + c^4 + 2(a²b² + b²c² + c²a²)
<=> a^4 + b^4 + c^4 = 2(a²b² + b²c² + c²a²)
<=> (a² + b² + c²)² = 4(a²b² + b²c² + c²a²) ---(cộng 2 vế cho 2(a²b² + b²c² + c²a²) )
<=> [-2(ab + bc + ca)]² = 4(a²b² + b²c² + c²a²) ----(do (1))
<=> 4.(a²b² + b²c² + c²a²) + 8.(ab²c + bc²a + a²bc) = 4(a²b² + b²c² + c²a²)
<=> 8.(ab²c + bc²a + a²bc) = 0
<=> 8abc.(a + b + c) = 0
<=> 0 = 0 (đúng), Vì a + b + c = 0
=> Đpcm
Đặt \(a+b-2c=x,b+c-2a=y,c+a-2b=z\)
\(\Rightarrow x+y+z=0\)
Chắc bạn biết: \(x+y+z=0\Rightarrow x^3+y^3+z^3=3xyz\)
Vậy \(\left(a+b-2c\right)^3+\left(b+c-2a\right)^3+\left(c+a-2b\right)^3=3\left(a+b-2c\right)\left(b+c-2a\right)\left(c+a-2b\right)\)
Chúc bạn học tốt.
a) Áp dụng công thức: \(a+b+c=0\Leftrightarrow a^3+b^3+c^3=3abc\)
Đặt \(\left\{{}\begin{matrix}x=a-b\\y=b-c\\z=c-a\end{matrix}\right.\)
Ta có: \(x+y+z=a-b+b-c+c-a=0\)
\(\Leftrightarrow x^3+y^3+z^3=3xyz\)
Thay vào biểu thức trên, ta được: \(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3=3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
Vậy ...
b) Tương tự câu a
Đặt \(\left\{{}\begin{matrix}a+b-2c=x\\b+c-2a=y\\c+a-2b=z\end{matrix}\right.\)(*)
Ta có: \(x+y+z=a+b-2c+b+c-2a+c+a-2b=0\)
\(\Leftrightarrow x^3+y^3+z^3=3xyz\)
Thay (*) vào biểu thức trên, ta được: \(\left(a+b-2c\right)^3+\left(b+c-2a\right)^3+\left(c+a-2b\right)^3=3\left(a+b-2c\right)\left(b+c-2a\right)\left(c+a-2b\right)\)
Vậy ...
bạn áp dụng các hằng đẳng thức là Ok:
a) \(-4x^2+12xy-9y^2+25=-\left(2x\right)^2+2.2x.3y-\left(3y\right)^2+25\)
= \(-\left(2x-3y\right)^2+25=\left(5-2x+3y\right)\left(5+2x-3y\right)\)
b) \(x^3-3x^2+3x-1=\left(x^3-1\right)-\left(3x^2-3x\right)=\left(x-1\right)\left(x^2+x+1^2\right)-3x\left(x-1\right)\)
= \(\left(x-1\right)\left(x^2+x+1^2-3x\right)=\left(x-1\right)\left(x^2-2x+1\right)=\left(x-1\right)\left(x-1\right)^2=\left(x-1\right)^3\)
c) \(a^6-a^4+2a^3+2a^2=a^2\left(a^4-a^2+2a+2\right)=a^2\left[a^2\left(a^2-1\right)+2\left(a+1\right)\right]\)
= \(a^2\left[a^2\left(a+1\right)\left(a-1\right)+2\left(a+1\right)\right]=a^2\left(a+1\right)\left(a^3+a^2+2\right)\)
a, 4b2c2 - (b2+c2-a2)2
= (2bc)²-(b²+c²-a²)²
=(2bc+b²+c²-a²)(2bc-b²-c²+a²)
=[(b+c)²-a²][a²-(b-c)²]
=(b+c+a)(b+c-a)(a+b-c)(a-b+c).
b, 8x3-64 = 23.x3-43 = (2x)3-43
= (2x-4)[(2x)2+2.x.4+42] = (2x-4)(4x2+8x+16)
c, 8x3-27= 23.x3-33 = (2x)3-33
= (2x-3)[(2x)2+2.x.3+32] = (2x-3)(4x2+6x+9)
Phân tích đa thức thành nhân tử
a) (1-2x)(1+2x)-x(x+2)(x-2)
\(=1-4x^2-x\left(x^2-4\right)\)
\(=1-4x^2-x^3+4x\)
\(=\left(1-x^3\right)+\left(4x-4x^2\right)\)
\(=\left(1-x\right)\left(1+x+x^2\right)+4x\left(1-x\right)\)
\(=\left(1-x\right)\left(1+x+x^2+4x\right)\)
\(=\left(1-x\right)\left(x^2+5x+1\right)\)
\(a\left(a+2b\right)^3-b\left(2a+b\right)^3\)
\(=a\left(a^3+6a^2b+12ab^2+8b^3\right)-b\left(8a^3+12a^2b+6ab^2+b^3\right)\)
\(=a^4+6a^3b+12a^2b^2+8b^3a-8a^3b-12a^2b^2+6ab^3-b^4\)
\(=a^4+6a^3b+8b^3a-8a^3b-6ab^3-b^4\)
\(=\left(a^4-b^4\right)+\left(6a^3b-6ab^3\right)+\left(8b^3a-8a^3b\right)\)
\(=\left(a-b\right)\left(a^3+a^2b+ab^2+b^3\right)+6ab\left(a^2-b^2\right)+8ab\left(b^2-a^2\right)\)
\(=\left(a-b\right)\left(a^3+a^2b+ab^2+b^3\right)+6ab\left(a-b\right)\left(a+b\right)-8ab\left(a-b\right)\left(a+b\right)\)
\(=\left(a-b\right)\left(a^3+a^2b+ab^2+b^3+6a^2b+6ab^2-8a^2b-8ab^2\right)\)
\(=\left(a-b\right)\left(a^3-a^2b-ab^2+b^3\right)\)
\(=\left(a-b\right)\left[a^2\left(a-b\right)-b^2\left(a-b\right)\right]\)
\(=\left(a-b\right)^3\left(a+b\right)\)
a) A = (a - b)3 + (b - c)3 + (c - a)3
Đặt : a - b = x ; b - c = y; c - a = z thì x + y + z = 0
Do đó: \(x^3+y^3+z^3=3xyz\)
Vậy A = \(3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
b) B = (a + b - 2c)3 + (b + c - 2a)3 + (c + a - 2b)3
Đặt : a + b - 2c = x ; b + c - 2a = y ; c + a - 2b = z
Thì x + y + z = 0 do đó \(x^3+y^3+z^3=3xyz\)
Vậy B = 3(a + b - 2c)(b + c - 2a)(c + a - 2b)
a) Ta có: \(A=\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3\)
\(=a^3-3a^2b+3ab^2-b^3+b^3-3b^2c+3bc^2-c^3+c^3-3c^2a+3ca^2-a^3\)
\(=-3\left(a^2b+ac^2-ab^2-bc^2+b^2c-a^2c\right)\)
\(=3\left[\left(a^2b-ab^2\right)+\left(ac^2-bc^2\right)-\left(a^2c-b^2c\right)\right]\)
\(=3\left[ab\left(a-b\right)+c^2\left(a-b\right)-c\left(a^2-b^2\right)\right]\)
\(=3\left[ab\left(a-b\right)+c^2\left(a-b\right)-c\left(a-b\right)\left(a+b\right)\right]\)
\(=3\left(a-b\right)\left[ab+c^2-c\left(a+b\right)\right]\)
\(=3\left(a-b\right)\left(ab+c^2-ca-cb\right)\)
\(=3\left(a-b\right)\left[\left(ab-ac\right)-\left(bc-c^2\right)\right]\)
\(=3\left(a-b\right)\left[a\left(b-c\right)-c\left(b-c\right)\right]\)
\(=3\left(a-b\right)\left(b-c\right)\left(a-c\right)\)
b)