Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{1}{5}x^2y-10x^2y-\frac{1}{5}x^2y\)
\(=-10x^2y=-10.0,5^2.2=-5\)
b) \(5x^2y-7xy^2+5x^2y-10x^2y+5xy^2\)
\(=-2xy^2=-2.0,5.4=-44\)
a/ Ta có :
\(f\left(x\right)=\left(9x^3-\frac{1}{3}x^3\right)+\left(3x^2+\frac{1}{3}x^2-3x^2\right)+\left(-\frac{1}{3}x-3x+3x\right)+\left(27-9\right)\)
\(=\frac{26}{3}x^3+\frac{1}{3}x^2-\frac{1}{3}x+18\)
Vậy...
b/ Ta có :
+) \(P\left(3\right)=\frac{26}{3}.3^3+\frac{1}{3}.3^2-\frac{1}{3}.3+18=254\)
+) \(P\left(-3\right)=\frac{26}{3}.\left(-3\right)^3+\frac{1}{3}.\left(-3\right)^2-\frac{1}{3}.\left(-3\right)+18=-212\)
Vậy..
1) a)
=\(\left(4-1+8\right)x^2=11x^2\)
b) =\(\left(\dfrac{1}{2}-\dfrac{3}{4}+1\right)x^2y^2=\dfrac{3}{4}x^2y^2\)
c) =(3-7+4-6)y=5y 2) a) ...=\(\left[\left(\dfrac{-2}{3}y^3\right)-\dfrac{1}{2}y^3\right]+3y^2-y^2\\ =\left[\left(\dfrac{-2}{3}-\dfrac{1}{2}\right)y^3\right]+\left(3-1\right)y^2=\dfrac{-7}{6}y^3+2y^2\) b) ...=\(\left(5x^3-x^3\right)-\left(3x^2+4x^2\right)+\left(x-x\right)=4x^3-7x^2\) 3) a)A=\(\left(5.\dfrac{1}{2}\right).\left(x.x^2.x\right)\left(y^2.y^2\right)=\dfrac{5}{2}x^4y^4\) b)Vậy Đơn thức A có bậc 8; hệ số là \(\dfrac{5}{2}\); phần biến là \(x^4y^4\) c)Khi x=1;y=-1 thì A=\(\dfrac{5}{2}.1^4.\left(-1\right)^4=\dfrac{5}{2}\)
Bài 5:
a)
\(F=3x^3y+6x^2y^2+3xy^3=3xy(x^2+2xy+y^2)=3xy(x+y)^2\)
\(=3.\frac{1}{2}.\frac{-1}{3}(\frac{1}{2}+\frac{-1}{3})^2=\frac{-1}{72}\)
b)
\(G=x^2y^2+xy+x^3+y^3=(-1)^2(-3)^2+(-1)(-3)+(-1)^3+(-3)^3\)
\(=9+3-1-27=-18\)
Bài 7:
a)
\(x^2+2x=0\Leftrightarrow x(x+2)=0\Rightarrow \left[\begin{matrix} x=0\\ x+2=0\end{matrix}\right. \Rightarrow \left[\begin{matrix} x=0\\ x=-2\end{matrix}\right.\)
Vậy đa thức có nghiệm $x=0; x=-2$
b)
\(-5x^4=0\Leftrightarrow x^4=0\Leftrightarrow x=0\)
Vậy đa thức có nghiệm $x=0$
c)
\(x^2+\sqrt{5}=0\Leftrightarrow x^2=-\sqrt{5}< 0\) (vô lý do bình phương một số thực luôn không âm)
Do đó đa thức vô nghiệm.
d)
\((x^2+3)(-6-4x^4)=0\Rightarrow \left[\begin{matrix} x^2+3=0\\ -6-4x^4=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x^2=-3< 0\\ x^4=\frac{-3}{2}< 0\end{matrix}\right.\) (vô lý)
Do đó đa thức vô nghiệm.
e)
\(3x^8+6=0\Leftrightarrow 3(x^4)^2=-6< 0\) (vô lý)
Do đó đa thức vô nghiệm.
f)
\(x^2+2x-3=0\Leftrightarrow x^2-x+3x-3=0\Leftrightarrow x(x-1)+3(x-1)=0\)
\(\Leftrightarrow (x-1)(x+3)=0\Rightarrow \left[\begin{matrix} x=1\\ x=-3\end{matrix}\right.\)
Đa thức có nghiệm $x=1, x=-3$
Bạn ơi câu b) bạn sai rồi, số nào nhân vs 0 đều = 0 nên đâu cần phải thay nữa đâu
Bài 3:
\(A=\dfrac{-5}{4}\cdot\dfrac{2}{5}x^2y\cdot x^2\cdot x^3y^4=\dfrac{-1}{2}x^7y^5\)
bậc là 12
Hệ số là -1/2
\(B=\dfrac{-3}{4}\cdot\dfrac{-8}{9}\cdot x^5y^4\cdot xy^2\cdot x^2y^5=\dfrac{2}{3}x^8y^{11}\)
Bậc là 19
Hệ số là 2/3
Bài 1
a)M+N=\(x^2y+xy^2-5x^2y^2+x^3+x^3+xy+3xy^2-x^2y+x^2y^2\)
=4xy2-4x2y2+2x3+xy
b)M-N=\(x^2y+xy^2-5x^2y^2+x^3-x^3-xy-3xy^2+x^2y-x^2y^2\)
=\(2x^2y-2xy^2-xy-6x^2y^2\)
Cảm ơn bạn rất rất nhiều
Bài 2b
Thay x = -1; y = 1 vào N ta đc:
\(N=\left(-1\right).1+\left(-1\right)^2.1^2+\left(-1\right)^3.1^3+\left(-1\right)^4.1^4+\left(-1\right)^5.1^5\)
\(=\left(-1\right)+1+\left(-1\right)+1+\left(-1\right)\)
\(=-1\)