Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(\frac{\frac{(a-b)^3}{(\sqrt{a}-\sqrt{b})^3}-b\sqrt{b}+2a\sqrt{a}}{a\sqrt{a}-b\sqrt{b}}=\frac{\frac{[(\sqrt{a}-\sqrt{b})(\sqrt{a}+\sqrt{b})]^3}{(\sqrt{a}-\sqrt{b})^3}-b\sqrt{b}+2a\sqrt{a}}{(\sqrt{a}-\sqrt{b})(a+\sqrt{ab}+b)}\)
\(=\frac{(\sqrt{a}+\sqrt{b})^3-b\sqrt{b}+2a\sqrt{a}}{(\sqrt{a}-\sqrt{b})(a+\sqrt{ab}+b)}\)
\(=\frac{a\sqrt{a}+3a\sqrt{b}+3b\sqrt{a}+b\sqrt{b}-b\sqrt{b}+2a\sqrt{a}}{(\sqrt{a}-\sqrt{b})(a+\sqrt{ab}+b)}=\frac{3\sqrt{a}(a+\sqrt{ab}+b)}{(\sqrt{a}-\sqrt{b})(a+\sqrt{ab}+b)}=\frac{3\sqrt{a}}{\sqrt{a}-\sqrt{b}}\)
\(\frac{3a+3\sqrt{ab}}{b-a}=\frac{3\sqrt{a}(\sqrt{a}+\sqrt{b})}{(\sqrt{b}-\sqrt{a})(\sqrt{b}+\sqrt{a})}=\frac{3\sqrt{a}}{\sqrt{b}-\sqrt{a}}\)
Do đó:
\(\frac{\frac{(a-b)^3}{(\sqrt{a}-\sqrt{b})^3}-b\sqrt{b}+2a\sqrt{a}}{a\sqrt{a}-b\sqrt{b}}+\frac{3a+3\sqrt{ab}}{b-a}=\frac{3\sqrt{a}}{\sqrt{a}-\sqrt{b}}+\frac{3\sqrt{a}}{\sqrt{b}-\sqrt{a}}=0\)
Ta có đpcm.
Ta có : \(\frac{\frac{\left(a-b\right)^3}{\left(\sqrt{a}-\sqrt{b}\right)^3}-b\sqrt{b}+2a\sqrt{a}}{a\sqrt{a}-b\sqrt{b}}+\frac{3a+3\sqrt{ab}}{b-a}\)
\(=\frac{\frac{\left(\sqrt{a}-\sqrt{b}\right)^3\left(\sqrt{a}+\sqrt{b}\right)^3}{\left(\sqrt{a}-\sqrt{b}\right)^3}+2a\sqrt{a}-b\sqrt{b}}{\sqrt{a}^3-\sqrt{b}^3}+\frac{3\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}{-\left(a-b\right)}\)
\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)^3+2a\sqrt{a}-b\sqrt{b}}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}+\frac{3\sqrt{a}\left(\sqrt{a}+\sqrt{b}\right)}{-\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)
\(=\frac{a\sqrt{a}+3a\sqrt{b}+3b\sqrt{a}+b\sqrt{b}+2a\sqrt{a}-b\sqrt{b}}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}+\frac{3\sqrt{a}}{-\left(\sqrt{a}-\sqrt{b}\right)}\)
\(=\frac{3a\sqrt{b}+3\sqrt{a}b+3a\sqrt{a}}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}+\frac{3\sqrt{a}}{-\left(\sqrt{a}-\sqrt{b}\right)}\)\(=\frac{3\sqrt{a}\left(\sqrt{ab}+b+a\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}+\frac{3\sqrt{a}}{-\left(\sqrt{a}-\sqrt{b}\right)}\)
\(=-\frac{3\sqrt{a}}{-\left(\sqrt{a}-\sqrt{b}\right)}+\frac{3\sqrt{a}}{-\left(\sqrt{a}-\sqrt{b}\right)}=0\)
Vậy ...
a) Ta có: \(\frac{a-b}{\sqrt{a}-\sqrt{b}}-\frac{\sqrt{a^3}-\sqrt{b^3}}{a-b}\)
\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}-\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{a}+\sqrt{b}}-\frac{a+\sqrt{ab}+b}{\sqrt{a}+\sqrt{b}}\)
\(=\frac{a+2\sqrt{ab}+b-a-\sqrt{ab}-b}{\sqrt{a}+\sqrt{b}}\)
\(=\frac{\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\)
b)Sửa đề: \(\frac{\left(\sqrt{a}+\sqrt{b}\right)^2-4\sqrt{ab}}{\sqrt{a}-\sqrt{b}}-\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}\)
Ta có: \(\frac{\left(\sqrt{a}+\sqrt{b}\right)^2-4\sqrt{ab}}{\sqrt{a}-\sqrt{b}}-\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}\)
\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(\sqrt{a}-\sqrt{b}\right)}-\frac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}\)
\(=\sqrt{a}-\sqrt{b}-\sqrt{a}-\sqrt{b}\)
\(=-2\sqrt{b}\)
c) Ta có: \(\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}+1}{\sqrt{a}-2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
\(=\left(\frac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}-\frac{\sqrt{a}-1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}-\frac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\right)\)
\(=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)
\(=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\frac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}\)
\(=\frac{\sqrt{a}-2}{3\sqrt{a}}\)
d) Ta có: \(\left(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right)\left(\frac{\sqrt{a}+\sqrt{b}}{a-b}\right)^2\)
\(=\left(\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}{\left(\sqrt{a}+\sqrt{b}\right)}-\sqrt{ab}\right)\left(\frac{\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\right)^2\)
\(=\left(a-\sqrt{ab}+b-\sqrt{ab}\right)\cdot\left(\frac{1}{\sqrt{a}-\sqrt{b}}\right)^2\)
\(=\left(a-2\sqrt{ab}+b\right)\cdot\frac{1}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)
\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(\sqrt{a}-\sqrt{b}\right)^2}=1\)
e) Ta có: \(\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{x+9}{9-x}\right):\left(\frac{3\sqrt{x}+1}{x-3\sqrt{x}}-\frac{1}{\sqrt{x}}\right)\)
\(=\left(\frac{\sqrt{x}\left(3-\sqrt{x}\right)}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}+\frac{x+9}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}\right):\left(\frac{3\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}-3}{\sqrt{x}\left(\sqrt{x}-3\right)}\right)\)
\(=\frac{3\sqrt{x}+9}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}:\frac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\)
\(=\frac{3\left(\sqrt{x}+3\right)}{-\left(\sqrt{x}-3\right)\cdot\left(\sqrt{x}+3\right)}\cdot\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\left(\sqrt{x}+2\right)}\)
\(=\frac{-3\sqrt{x}}{2\sqrt{x}+4}\)
quy đồng mẫu số ta được
\(\frac{\left(a-b\right)^2}{a\left(a^2-b^2\right)}+\frac{\left(a+b\right)^2}{a\left(a^2-b^2\right)}=\frac{a\left(3a-b\right)}{a\left(a^2-b^2\right)}\)<=> (a-b)2 +(a+b)2 = a(3a-b) <=> a2- ab- 2b2= 0 <=> (a+ b)(a- 2b) = 0
<=> a=-b hoăc a =2b
với a= -b => P= \(\frac{-b^3+2b^3+2b^3}{-2b^3-b^3+2b^3}=-3\)
với a =2b => P= \(\frac{\left(2b\right)^3+2.\left(2b\right)^2b+2b^3}{2.\left(2b\right)^3+2b.b^2+2b^3}=\frac{3}{2}\)
\(S=\frac{\left[\frac{\left(a-b\right)\left(\sqrt{a}-\sqrt{b}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\right]^3+2a\sqrt{a}+b\sqrt{b}}{3a^2+3b\sqrt{ab}}+\frac{\sqrt{a}\left(\sqrt{b}-\sqrt{a}\right)}{\sqrt{a}\left(a-b\right)}\)
\(S=\frac{\left(\sqrt{a}-\sqrt{b}\right)^3+2\left(\sqrt{a}\right)^2\sqrt{a}+\left(\sqrt{b}\right)^2\sqrt{b}}{3a^2+3b\sqrt{ab}}+\frac{\sqrt{b}-\sqrt{a}}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
\(S=\frac{\left(\sqrt{a}\right)^3-3\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)-\left(\sqrt{b}\right)^3+2\left(\sqrt{a}\right)^3+\left(\sqrt{b}\right)^3}{3a^2+3b\sqrt{ab}}-\frac{1}{\sqrt{a}+\sqrt{b}}\)
\(S=\frac{3\left(\sqrt{a}\right)^3-3a\sqrt{b}+3\sqrt{a}b}{3a^2+3b\sqrt{ab}}-\frac{1}{\sqrt{a}+\sqrt{b}}\)
\(S=\frac{\sqrt{a}\left(a-\sqrt{ab}+b\right)}{\sqrt{a}\left[\left(\sqrt{a}\right)^3+\left(\sqrt{b}\right)^3\right]}-\frac{1}{\sqrt{a}+\sqrt{b}}\)
\(S=\frac{a-\sqrt{ab}+b}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}-\frac{1}{\sqrt{a}+\sqrt{b}}\)
\(S=\frac{1}{\sqrt{a}+\sqrt{b}}-\frac{1}{\sqrt{a}+\sqrt{b}}=0\)
1. Ta thấy:
\(\frac{(a-b)^3}{(\sqrt{a}-\sqrt{b})^3}-b\sqrt{b}+2a\sqrt{a}=\frac{(\sqrt{a}-\sqrt{b})^3(\sqrt{a}+\sqrt{b})^3}{(\sqrt{a}-\sqrt{b})^3}-b\sqrt{b}+2a\sqrt{a}\)
\(=(\sqrt{a}+\sqrt{b})^3-b\sqrt{b}+2a\sqrt{a}=a\sqrt{a}+b\sqrt{b}+3\sqrt{ab}(\sqrt{a}+\sqrt{b})-b\sqrt{b}+2a\sqrt{a}\)
\(=3a\sqrt{a}+3\sqrt{ab}(\sqrt{a}+\sqrt{b})=3\sqrt{a}(a+\sqrt{ab}+b)\)
$a\sqrt{a}-b\sqrt{b}=(\sqrt{a}-\sqrt{b})(a+\sqrt{ab}+b)$
\(\frac{\frac{(a-b)^3}{(\sqrt{a}-\sqrt{b})^3}-b\sqrt{b}+2a\sqrt{a}}{a\sqrt{a}-b\sqrt{b}}=\frac{3\sqrt{a}}{\sqrt{a}-\sqrt{b}}(1)\)
\(\frac{3a+3\sqrt{ab}}{b-a}=\frac{3\sqrt{a}(\sqrt{a}+\sqrt{b})}{(\sqrt{b}-\sqrt{a})(\sqrt{b}+\sqrt{a})}=\frac{-3\sqrt{a}}{\sqrt{a}-\sqrt{b}}(2)\)
Từ $(1);(2)$ ta có đpcm.
Câu 2:
Điều kiện đã cho tương đương với:
$\frac{a-b}{a(a+b)}+\frac{a+b}{a(a-b)}=\frac{3a-b}{(a-b)(a+b)}$
$\Leftrightarrow \frac{(a-b)^2}{a(a+b)(a-b)}+\frac{(a+b)^2}{a(a-b)(a+b)}=\frac{a(3a-b)}{a(a-b)(a+b)}$
$\Leftrightarrow (a-b)^2+(a+b)^2=a(3a-b)$
$\Leftrightarrow 2a^2+2b^2=3a^2-ab$
$\Leftrightarrow a^2-ab-2b^2=0$
$\Leftrightarrow (a+b)(a-2b)=0$
$\Leftrightarrow a=-b$ hoặc $a=2b$
Nếu $a=-b$ thì $|a|=|b|$ (trái giả thiết). Do đó $a=2b$
Khi đó:
$P=\frac{(2b)^3+2(2b)^2.b+3b^3}{2(2b)^3+2b.b^2+b^3}=\frac{19b^3}{19b^3}=1$