Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\left|x+\dfrac{19}{5}\right|\ge0\forall x\in Q\)
\(\left|y+\dfrac{2017}{2018}\right|\ge0\forall y\in Q\)
\(\left|z-2019\right|\ge0\forall x\in Q\)
\(\Rightarrow\left|x+\dfrac{19}{5}\right|+\left|y+\dfrac{2017}{2018}\right|+\left|z-2019\right|\ge0\forall x,y,z\in Q\)
Dấu \("="\) xảy ra khi \(\left\{{}\begin{matrix}\left|x+\dfrac{19}{5}\right|=0\\\left|y+\dfrac{2017}{2018}\right|=0\\\left|z-2019\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{-19}{5}\\y=\dfrac{-2017}{2018}\\z=2019\end{matrix}\right.\).
b) Lại có:
\(\left|x-\dfrac{9}{5}\right|\ge0\forall x\in Q\)
\(\left|y+\dfrac{3}{4}\right|\ge0\forall y\in Q\)
\(\left|z+\dfrac{7}{2}\right|\ge0\forall z\in Q\)
\(\Rightarrow\left|x-\dfrac{9}{5}\right|+\left|y+\dfrac{3}{4}\right|+\left|z+\dfrac{7}{2}\right|\ge0\forall x,y,zQ\)
Mà theo đề bài:
\(\left|x-\dfrac{9}{5}\right|+\left|y+\dfrac{3}{4}\right|+\left|z+\dfrac{7}{2}\right|\le0\forall\)
\(\Rightarrow\left|x-\dfrac{9}{5}\right|+\left|y+\dfrac{3}{4}\right|+\left|z+\dfrac{7}{2}\right|=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left|x-\dfrac{9}{5}\right|=0\\\left|y+\dfrac{3}{4}\right|=0\\\left|z+\dfrac{7}{2}\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{9}{5}\\y=\dfrac{-3}{4}\\z=\dfrac{-7}{2}\end{matrix}\right.\)
Vậy .....
a) \(\left|x+\dfrac{19}{5}\right|+\left|y+\dfrac{2017}{2018}\right|+\left|z-2019\right|=0\)
Ta có: \(\left|x+\dfrac{19}{5}\right|\ge0;\left|y+\dfrac{2017}{2018}\right|\ge0;\left|z-2019\right|\ge0\)
Để \(\left|x+\dfrac{19}{5}\right|+\left|y+\dfrac{2017}{2018}\right|+\left|z-2019\right|=0\) thì:
\(\left\{{}\begin{matrix}\left|x+\dfrac{19}{5}\right|=0\\\left|y+\dfrac{2017}{2018}\right|=0\\\left|z-2019\right|=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{-19}{5}\\y=\dfrac{-2017}{2018}\\z=2019\end{matrix}\right.\)
Vậy............................
b) Ta có: \(\left|x-\dfrac{9}{5}\right|\ge0;\left|y+\dfrac{3}{4}\right|\ge0;\left|z+\dfrac{7}{2}\right|\ge0\)
Mà \(\left|x-\dfrac{9}{5}\right|+\left|y+\dfrac{3}{4}\right|+\left|z+\dfrac{7}{2}\right|\le0\) thì:
\(\left|x-\dfrac{9}{5}\right|=\left|y+\dfrac{3}{4}\right|=\left|z+\dfrac{7}{2}\right|=0\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{9}{5}\\y=\dfrac{-3}{4}\\z=\dfrac{-7}{2}\end{matrix}\right.\)
Vậy............................
a) (3x-24) = 2.74:73
=> 3x-24 = 2.7
=> 3x-16 = 14
=> 3x = 14+16
=> 3x = 30
=> x = 30:3
Vậy x = 10
b) x - [42 + (-28)] = -8
=> x - 14 = -8
=> x = -8 + 14
Vậy x = 6
c) l x-3 l = l 5 l + l -7 l
=> l x-3 l = 5+7
=> l x-3 l = 12
=> x-3 = 12 hay x-3 = -12
=> x = 12+3 hay x = -12+3
Vậy x = 15 hay x = -9
d) mình k biết
Bài 3:
\(\left|1-2x\right|+x+2=0\)
⇒ \(\left|1-2x\right|+x=0-2\)
⇒ \(\left|1-2x\right|+x=-2\)
⇒ \(\left|1-2x\right|=-2-x\)
⇒ \(\left[{}\begin{matrix}1-2x=-2-x\\1-2x=2+x\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}1+2=-x+2x\\1-2=x+2x\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}3=1x\\-1=3x\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}x=3:1\\x=\left(-1\right):3\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=3\\x=-\frac{1}{3}\end{matrix}\right.\)
Vậy \(x\in\left\{3;-\frac{1}{3}\right\}.\)
Bài 4:
\(\left|5x-3\right|=\left|7-x\right|\)
⇒ \(\left[{}\begin{matrix}5x-3=7-x\\5x-3=x-7\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}5x+x=7+3\\5x-x=\left(-7\right)+3\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}6x=10\\4x=-4\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}x=10:6\\x=\left(-4\right):4\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=\frac{5}{3}\\x=-1\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{5}{3};-1\right\}.\)
Chúc bạn học tốt!
a) TA CÓ : lx-3/4l > 0 với mọi x dấu bằng xảy ra khi và chỉ khi x-3/4 =0
l2y-1l > 0 với mọi y dấu bằng xảy ra khi và chỉ khi 2y-1=0
SUY RA: lx-3/4l+l2y-1l > 0 với mọi x,y dấu bằng xảy ra khi và chỉ khi x-3/4=0 và 2y-1=0
Vậy lx-3/4l + l2y-1l =0 khi và chỉ khi x-3/4=0 và 2y-1=0
<=> x=3/4 và y=1/2
b)TA CÓ: lx-yl>0 với mọi x,y dấu bằng xảy ra khi và chỉ khi x-y=0
l1/4x-2/3l>0 với mọi x dấu bằng xảy ra khi và chỉ khi 1/4x-2/3=0
SUY RA: lx-yl + l1/4x-2/3l >0 với mọi x,y dấu bằng xảy ra khi và chỉ khi x-y=0 và 1/4x-2/3=0
Vậy lx-yl + l1/4x-2/3l =0 khi và chỉ khi x-y=0 ; 1/4x-2/3=0 <=> x=y và x=8/3 <=> x=y=8/3
c) lx^2 - 4/81l >0 với mọi x dấu bằng xảy ra khi và chỉ khi x^2 - 4/81 = 0
l3-4yl>0 với mọi y dấu bằng xảy ra khi và chỉ khi 3-4y=0
SUY RA: lx^2- 4/81l + l3-4yl > 0 với mọi x,y dấu bằng xảy ra khi và chỉ khi x^2-4/81 =0 và 3-4y=0
Vậy lx^2-4/81l +l3-4yl=0 khi và chỉ khi x^2-4/81=0 ; 3-4y=0 <=> x=2/9;y=3/4 hoặc x=-2/9;y=3/4 .
chúc bạn học tốt !
Ta có \(\hept{\begin{cases}\left|x-\frac{3}{4}\right|\ge0\forall x\\\left|2y-1\right|\ge0\forall y\end{cases}}\Leftrightarrow\left|x-\frac{3}{4}\right|+\left|2y-1\right|\ge0\forall x;y\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-\frac{3}{4}=0\\2y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{3}{4}\\y=\frac{1}{2}\end{cases}}\)
Vậy \(x=\frac{3}{4};y=\frac{1}{2}\)
b) Ta có \(\hept{\begin{cases}\left|x-y\right|\ge0\forall x;y\\\left|\frac{1}{4}y-\frac{2}{3}\right|\ge0\forall y\end{cases}}\Rightarrow\left|x-y\right|+\left|\frac{1}{4}y-\frac{2}{3}\right|\ge0\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-y=0\\\frac{1}{4}y-\frac{2}{3}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y\\y=\frac{8}{3}\end{cases}}\Rightarrow x=y=\frac{8}{3}\)
1,\(\text{|1-3x|=0}\)
=>\(1-3x=0\)
=>\(3x=0\)
=>\(x=0\)
Vậy...
2,\(\text{|}1+x\text{|}+\text{|}x-\dfrac{1}{3}\text{|}=0\)
=>\(1+x=0\)và \(x-\dfrac{1}{3}=0\)
=>\(x=-1\) và \(x=\dfrac{1}{3}\)
=> x thuộc rỗng
các câu sau tương tự
Bài 7 :
\(\frac{1}{4}-\left(2x-1\right)^2=0\)
\(\left(2x-1\right)^2=\frac{1}{4}-0\)
\(\left(2x-1\right)^2=\frac{1}{4}\)
\(\left(2x-1\right)^2=\left(\frac{1}{2}\right)^2\)
TH1:\(\Rightarrow2x-1=\frac{1}{2}\)
\(2x=\frac{1}{2}+1\)
\(2x=\frac{3}{2}\)
\(x=\frac{3}{4}\)
TH2:\(\Rightarrow2x-1=-\frac{1}{2}\)
\(2x=-\frac{1}{2}+1\)
\(2x=\frac{1}{2}\)
\(x=\frac{1}{4}\)
Vậy x \(\in\left\{\frac{1}{4};\frac{3}{4}\right\}\)
Bài 6 :
\(3^{x+1}=81\)
\(3^{x+1}=3^4\)
\(x+1=4\)
\(\Rightarrow x=3\)
Vậy x = 3
Nhanh lên nhé