K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2022

\(B=2\cdot\dfrac{-1}{2}+\dfrac{-1}{2}\cdot\dfrac{1}{4}-\dfrac{1}{4}\cdot\dfrac{-1}{2}-2\cdot\dfrac{-1}{2}\)

\(=-1-\dfrac{1}{8}+\dfrac{1}{8}+1=0\)

9 tháng 12 2021

\(A=\dfrac{2x^2\left(3x-4y+2\right)}{x\left(3x+y\right)\left(3x-y\right)}=\dfrac{2x\left(3x-4y+2\right)}{\left(3x+y\right)\left(3x-y\right)}\\ A=\dfrac{2\left(3-8+2\right)}{\left(3+2\right)\left(3-2\right)}=\dfrac{2\left(-3\right)}{5}=\dfrac{-6}{5}\)

8 tháng 12 2021

ĐK: \(3x\ne\pm y;x\ne0\)

A = \(\dfrac{3x}{3x+y}-\dfrac{x}{3x-y}+\dfrac{2x}{\left(3x-y\right)\left(3x+y\right)}\)

\(\dfrac{3x\left(3x-y\right)-x\left(3x+y\right)+2x}{\left(3x-y\right)\left(3x+y\right)}=\dfrac{6x^2-4xy+2x}{\left(3x-y\right)\left(3x+y\right)}=\dfrac{2x\left(3x-2y+1\right)}{\left(3x-y\right)\left(3x+y\right)}\)

Thay x = 1; y=2, ta có:

A = \(\dfrac{2.1\left(3.1-2.2+1\right)}{\left(3.1-2\right)\left(3.1+2\right)}=0\)

26 tháng 10 2021

a) \(A=\left(x-1\right).\left(x+1\right)+\left(x+2\right).\left(x^2+2x+4\right)-x.\left(x^2+x+2\right)\)

\(=x^2-1+x^3+2x^2+4x+2x^2+4x+8-x^3-x^2-2x\)

\(=\left(x^3-x^3\right)+\left(x^2+2x^2+2x^2-x^2\right)+\left(4x+4x-2x\right)+\left(-1+8\right)\)

\(=4x^2+6x+7\)

b) Thay vào ta được

\(A=4.\left(\frac{1}{2}\right)^2+6.\frac{1}{2}+7=1+3+7=11\)

13 tháng 8 2019

a) \(A=x^2-4y^2+x-2y\)

\(=\left(x-2y\right)\left(x+2y\right)+\left(x-2y\right)\)

\(=\left(x-2y\right)\left(x+2y+1\right)\)

Thay vào 

b) tương tự

13 tháng 8 2019

Tại x=1 ; y=2 thay vào BT ta có 

A= \(1-4.2^2+1-2.2=\)-18

ý b) cũng thay v thoy 

29 tháng 12 2017

B1 :

a, B = (x+1)^2+(y-2)^2 = (99+1)^2+(102-2)^2 =  100^2+100^2 = 20000

b, = (2x^2+16x+32)-2y^2

   = 2.(x+4)^2-2y^2

   = 2.[(x+4)^2-y^2] = 2.(x+4-y).(x+4+y)

c, <=> (x^2-3x)+(2x-6) = 0

<=> (x-3).(x+2) = 0

<=> x-3=0 hoặc x+2=0

<=> x=3 hoặc x=-2

B2 :

P = (3-x).(x+3)/x.(x-3) = -(x+3)/x = -x-3/x

k mk nha

29 tháng 12 2017

Bai 1

a)B=(x+1)2+(y-2)2

     Voi x=99,y=102

=>B= 1002+1002

       =20000

b)\(2x^2-2y^2+16x+32\)

=\(2\left[\left(x^2+8x+16\right)-y^2\right]\)

=\(2\left[\left(x+4\right)^2-y^2\right]\)

=2(x-y+4)(x+y+4)

c)\(x^2-3x+2x-6=0\)

=>x(x-3)+2(x-3)=0

=>(x-3)(x+2)=0

=>x=-2;3

Bai 2

\(P=\frac{9-x^2}{x^2-3x}\)

    =\(-\frac{x^2-9}{x\left(x-3\right)}\)

   =\(-\frac{\left(x-3\right)\left(x+3\right)}{x\left(x-3\right)}\)

=\(\frac{-x-3}{x}\)

17 tháng 6 2015

1. Ta có: 

\(x^3-9x^2+27x-26=x^3-2x^2-7x^2+14x+13x-26\)

\(=x^2\left(x-2\right)-7x\left(x-2\right)+13\left(x-2\right)=\left(x-2\right)\left(x^2-7x+13\right)\)

Thay x = 23, ta có: \(C=\left(23-2\right)\left(23^2-7.23+13\right)=8001\)

2.

a) \(x^2+4y^2+6x-12y+18=0\)

\(\Leftrightarrow\left(x^2-6x+9\right)+\left(4y^2-12y+9\right)=0\)

\(\Leftrightarrow\left(x-3\right)^2+\left(2y-3\right)^2=0\)

Mà \(\left(x-3\right)^2\ge0\) với mọi x, \(\left(2y-3\right)^2\ge0\) với mọi y

\(\Rightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)và \(\left(2y-3\right)^2=0\Leftrightarrow2y-3=0\Leftrightarrow y=\frac{3}{2}\)

Vậy \(\left(x,y\right)=\left(3;\frac{3}{2}\right)\)

b) \(2x^2+2y^2+2xy-10x-8y+41=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2-10x+25\right)+\left(y^2-8y+16\right)=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(x-5\right)^2+\left(y-4\right)^2=0\)

.....................................

Rồi giải tương tự như trên

9 tháng 6 2021

a, ĐKXĐ: x≠±3

A=\(\left(\dfrac{3-x}{x+3}.\dfrac{x^2+6x+9}{x^2-9}+\dfrac{x}{x+3}\right):\dfrac{3x^2}{x+3}\)

A=\(\left(\dfrac{3-x}{x+3}.\dfrac{\left(x+3\right)^2}{\left(x+3\right)\left(x-3\right)}+\dfrac{x}{x+3}\right):\dfrac{3x^2}{x+3}\)

A=\(\left(\dfrac{3-x}{x-3}+\dfrac{x}{x+3}\right):\dfrac{3x^2}{x+3}\)

A=\(\left(\dfrac{9-x^2}{x^2-9}+\dfrac{x^2-3x}{x^2-9}\right):\dfrac{3x^2}{x+3}\)

A=\(\left(\dfrac{-3}{x+3}\right):\dfrac{3x^2}{x+3}\)

A=\(\dfrac{-1}{x^2}\)

b, Thay x=\(-\dfrac{1}{2}\) (TMĐKXĐ) vào A ta có:

\(\dfrac{-1}{\left(-\dfrac{1}{2}\right)^2}\)=-4

c, A<0 ⇔ \(\dfrac{-1}{x^2}< 0\) ⇔ x2>0 (Đúng với mọi x)

Vậy để A<0 thì x đúng với mọi giá trị (trừ ±3)