Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(2n+12⋮n+2\)
Mà \(n+2⋮n+2\)
\(\Leftrightarrow\hept{\begin{cases}2n+12⋮n+2\\2n+4⋮n+2\end{cases}}\)
\(\Leftrightarrow8⋮n+2\)
\(\Leftrightarrow n+2\inƯ\left(8\right)\)
Suy ra :
+) n + 2 = 1 => n = -1 (loại)
+) n + 2 = 2 => n = 0
+) n + 2 = 4 => n = 2
+) n + 2 = 8 => n = 6
Vậy ......
b/ \(3n+5⋮n-2\)
Mà \(n-2⋮n-2\)
\(\Leftrightarrow\hept{\begin{cases}3n+5⋮n-2\\3n-6⋮n-2\end{cases}}\)
\(\Leftrightarrow11⋮n+2\)
\(\Leftrightarrow n+2\inƯ\left(11\right)\)
\(\Leftrightarrow\orbr{\begin{cases}n+2=1\\n+2=11\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}n=-1\left(loại\right)\\n=9\end{cases}}\)
Vậy ..
a/ \(\left(x+3\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\x^2+1=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=-3\\x^2=-1\left(loại\right)\end{cases}}\)
Vậy ....
b/ \(\left(x+7\right)\left(x^2-36\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+7=0\\x^2-36=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=-7\\x^2=36\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=-7\\x=6or=-6\end{cases}}\)
Vậy ...
1.x=1;5
2.x=11
3.x=1;y=4
4.a)a=2;12 b)a=1;2
nho h cho minh nha
(x - 2)(y + 3) = 7
\(\Rightarrow\) x - 2 và y + 3 \(\in\) Ư(7)
Ư(7) = {1; -1; 7; -7}
Xét các TH:
\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2=7\\y+3=-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=9\\y=-4\end{matrix}\right.\\\left\{{}\begin{matrix}x-2=-7\\y+3=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-5\\y=-2\end{matrix}\right.\\\left\{{}\begin{matrix}x-2=1\\y+3=7\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\\\left\{{}\begin{matrix}x-2=-1\\y+3=-7\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=-10\end{matrix}\right.\end{matrix}\right.\)
Vậy x \(\in\) {9; -5; 3; 1} thì y \(\in\) {-4; -2; 4; -10}
Mình làm mẫu phần này thì (x + 3)(y + 5) = -6 cũng vậy nha!
y + 3 chia hết cho x + 1 và 2x - 5 chia hết cho x + 4 mk làm sau nha!
Chúc bn học tốt
\(A=2018-\left|x-7\right|-\left|y+2\right|\)
Ta có: \(\hept{\begin{cases}\left|x-7\right|\ge0\forall x\\\left|y+2\right|\ge0\forall y\end{cases}}\Rightarrow2018-\left|x-7\right|-\left|y+2\right|\le2018\)
\(A=2018\Leftrightarrow\hept{\begin{cases}\left|x-7\right|=0\\\left|y+2\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=7\\y=-2\end{cases}}}\)
Vậy \(A_{m\text{ax}}=2018\Leftrightarrow\hept{\begin{cases}x=7\\y=-2\end{cases}}\)
Tham khảo~
a.x(y+3)=3
=> x(y+3) ∈Ư(3)={-3;-1;1;3}
ta có bảng sau
x | -3 | -1 | 1 | 3 |
y+3 | -1 | -3 | 3 | 1 |
y | -4 | -6 | 0 | -2 |
vậy x=-3 thì y=-4
x=-1 thì y=-6
x=1 thì y=0
x=3 thì y=-2
c.x+3⋮ x+1
=> (x+3)-(x+1)⋮(x+1)
=> (x+3-x-1)⋮(x+1)
=> 2⋮(x+1)
=> (x+1) ∈ Ư(2)={-2;-1;1;2}
=> x∈{-3;-2;0;1}
vậy x ∈{-3;-2;0;1}
b,d tương tự
a.(x-2)(x+3)>0
=>\(\left[{}\begin{matrix}x-2>0\\x+3>0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x>2\\x>-3\end{matrix}\right.\)
=> x>2
vậy x>2
b.(x-2)(x-1)>0
=> \(\left[{}\begin{matrix}x-2>0\\x-1>0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x>2\\x>1\end{matrix}\right.\)
=> x>2
vậy x>2
c.(x-2)(x2+1)>0
=> \(\left[{}\begin{matrix}x-2>0\\x^2+1>0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x>2\\x^2>-1\Rightarrow x>\sqrt{-1}\end{matrix}\right.\)
vậy x>2
d.(x-1)(x+2)>0
=> \(\left[{}\begin{matrix}x-1>0\\x+2>0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x>1\\x>-2\end{matrix}\right.\)
=> x>1
vậy x>1