K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2019

Phương trình có 2 nghiệm x1;x2 thì :\(\Delta>0\)

\(\Delta=9+4.6=33>0\)

Theo định lí Vi-ét,ta có :

\(\left\{{}\begin{matrix}x_1+x_2=3\\x_1.x_2=-6\end{matrix}\right.\)

Mà : \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1.x_2=3^2+12=21\)

=> Chọn A.(21)

30 tháng 11 2022

a: \(\text{Δ}=\left(m+3\right)^2-4\left(-2m^2+2\right)\)

\(=m^2+6m+9+8m^2-8\)

=9m^2+6m+1

=(3m+1)^2

Để pt có hai nghiệm pb thì 3m+1<>0

=>m<>-1/3

\(\left\{{}\begin{matrix}x_1+x_2=-m-3\\3x_1+2x_2=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_1+3x_2=-3m-9\\3x_1+2x_2=8\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x_2=-3m-17\\x_1=-m-3+3m+17=2m+14\end{matrix}\right.\)

x1x2=-2m^2+2

=>-2m^2+2=(-3m-17)(2m+14)

\(\Leftrightarrow2m^2-2=\left(3m+17\right)\left(2m+14\right)\)

\(\Leftrightarrow6m^2+42m+34m+238-2m^2+2=0\)

=>4m^2+76m+236=0

hay \(m=\dfrac{-19\pm5\sqrt{5}}{2}\)

b: \(x^2+\left(m-1\right)x+5m-6=0\)

\(\text{Δ}=\left(m-1\right)^2-4\left(5m-6\right)\)

=m^2-2m+1-20m+24

=m^2-22m+25

Để phương trình có hai nghiệm phân biệt thì m^2-22m+25>0

=>\(\left[{}\begin{matrix}m< 11-4\sqrt{6}\\m>11+4\sqrt{6}\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x_1+x_2=-m+1\\4x_1+3x_2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x_1+4x_2=-4m+4\\4x_1+3x_2=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x_2=-4m+3\\x_1=-m+1+4m-3=3m-2\end{matrix}\right.\)

x1x2=5m-6

=>(-4m+3)(3m-2)=5m-6

=>-12m^2+8m+9m-6=5m-6

=>-12m^2+17m-5m=0

=>-12m^2+12m=0

=>m=0 hoặc m=1

NV
24 tháng 10 2019

\(\Delta'=m^2-m^2+m-1=m-1\ge0\Rightarrow m\ge1\)

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-m+1\end{matrix}\right.\)

\(S=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)

\(=4m^2-2\left(-m+1\right)\)

\(=4m^2+2m+1\)

Xét \(f\left(m\right)=4m^2+2m+1\) trên \([1;+\infty)\)

\(a=4>0\) ; \(-\frac{b}{2a}=-\frac{1}{4}< 1\Rightarrow f\left(m\right)\) đồng biến trên \([1;+\infty)\)

\(\Rightarrow S_{min}=f\left(m\right)_{min}=f\left(1\right)=7\)

a: Để PT có hai nghiệm trái dấu thì 2m-4<0

=>m<2

b: Khi x=1 thì PT sẽ là \(1+4+2m-4=0\)

=>m=-1/2

\(x_1+x_2=-4\)

=>x2=-4-1=-5

c: \(\text{Δ}=4^2-4\left(2m-4\right)=16-8m+16=-8m+32\)

ĐểPT có 2 nghiệm thì -8m+32>=0

=>-8m>=-32

=>m<=4

\(x_1^2+x_2^2=10\)

=>(x1+x2)^2-2x1x2=10

\(\Leftrightarrow\left(-4\right)^2-2\left(2m-4\right)=10\)

=>16-4m+8=10

=>24-4m=10

=>4m=14

=>m=7/2

NV
25 tháng 11 2019

\(\Delta'=4-m+1=5-m\ge0\Rightarrow m\le5\)

Theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=m-1\end{matrix}\right.\)

a/ \(x_1^3+x_2^3=40\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)-40=0\)

\(\Leftrightarrow4^3-12\left(m-1\right)-40=0\Rightarrow m=3\)

b/ \(P=\left(x_1x_2\right)^2+5\left(x_1+x_2\right)^2-10x_1x_2+4\)

\(=\left(m-1\right)^2+5.4^2-10\left(m-1\right)+4\)

\(=m^2-12m+95\)

\(=\left(7-m\right)\left(5-m\right)+60\)

Do \(m\le5\Rightarrow\left\{{}\begin{matrix}7-m>0\\5-m\ge0\end{matrix}\right.\) \(\Rightarrow\left(7-m\right)\left(5-m\right)\ge0\)

\(\Rightarrow P\ge60\Rightarrow P_{min}=60\) khi \(m=5\)

NV
25 tháng 11 2019

\(5\left(x^2_1+x_2^2\right)=5\left(x_1^2+x_2^2+2x_1x_2-2x_1x_2\right)=5\left(x_1+x_2\right)^2-10x_1x_2\)

NV
6 tháng 9 2020

a/ Bạn tự giải

b/ Pt có 2 nghiệm pb \(\Leftrightarrow\Delta'=4-m>0\Rightarrow m< 4\)

Khi đó theo đl Viet: \(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=m\end{matrix}\right.\)

\(x_1^2+x_2^2-5x_1x_2=9\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-7x_1x_2=9\)

\(\Leftrightarrow16-7m=9\)

\(\Leftrightarrow m=1\)

AH
Akai Haruma
Giáo viên
29 tháng 12 2019

Lời giải:

PT (2) $\Leftrightarrow x+y+xy+1=0$

$\Leftrightarrow (x+1)(y+1)=0$

$\Rightarrow x+1=0$ hoặc y+1=0$

Nếu $x+1=0$ suy ra $x=-1$. Thay vào PT $(1)$ suy ra $y^2=2\Rightarrow y=\pm \sqrt{2}$

Nếu $y+1=0\Rightarrow y=-1$. Thay vào PT $(1)$ suy ra $x^2=2\Rightarrow x=\pm \sqrt{2}$

Vậy $(x,y)=(-1; \pm \sqrt{2}); (\pm \sqrt{2}; -1)$

Từ đây ta suy ra:

A đúng.

B đúng

C sai

D đúng

14 tháng 2 2016

    (x2-3x+2)(x2-9x+20)=4

=>(x-1)(x-2)(x-4)(x-5)=4

Đặt x-3=a , phương trình tương đương:

    (a+2)(a+1)(a-1)(a-2)=4

=>(a2-1)(a2-4)=4

=>a4-5a2=0

Tự giải nốt nhé!