K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2019

Ta có:   ∆ ' = m 2 - ( m 2 + 3 m - 1 ) = - 3 m + 1

Để phương trình đã cho có nghiệm khi và chỉ khi: 

∆ ' ≥ 0 ⇔ - 3 m + 1 ≥ 0 ⇔ m ≤ 1 3

Câu 1: D

 

4 tháng 12 2021

Bạn ơi câu 2 đâu

5 tháng 12 2021

D

NV
5 tháng 12 2021

Pt đã cho có 2 nghiệm trái dấu khi:

\(ac< 0\Leftrightarrow\left(m+1\right)\left(m-2\right)< 0\)

\(\Leftrightarrow-1< m< 2\)

6 tháng 1 2018

Đáp án: C

15 tháng 10 2019

Với m = 1 phương trình đã cho có dạng

2 x 2   +   2   =   0 .

Phương trình này vô nghiệm, nên phương án A bị loại. Với m = -1 phương trình đã cho trở thành phương trình bậc nhất 6x + 2 = 0 chỉ có một nghiệm nên phương án B bị loại.

Với m = 2 phương trình đã cho trở thành phương trình

3 x 2   –   3 x   +   2   =   0 .

Phương trình này vô nghiệm, nên phương án D bị loại.

Đáp án: C

5 tháng 12 2021

A

5 tháng 12 2021

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-1=0\\m^2-2m-3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\pm1\\m\ne-1;m\ne3\end{matrix}\right.\Leftrightarrow m=1\)

Chọn A

7 tháng 5 2016

\(\Leftrightarrow2m.2^x+\left(2m+1\right)\left(3-\sqrt{5}\right)^x+\left(3+\sqrt{5}\right)^x=0\)

\(\Leftrightarrow\left(\frac{3+\sqrt{5}}{2}\right)^x+\left(2m+1\right)\left(\frac{3-\sqrt{5}}{2}\right)^x+2m< 0\)

Đặt \(t=\left(\frac{3+\sqrt{5}}{2}\right)^x,0< t\le1\Rightarrow\frac{1}{t}=\left(\frac{3-\sqrt{5}}{2}\right)^x\)

Phương trình trở thành :

\(t+\left(2m+1\right)\frac{1}{t}+2m=0\) (*)

a. Khi \(m=-\frac{1}{2}\) ta có \(t=1\) suy ra \(\left(\frac{3+\sqrt{5}}{2}\right)^x=1\Leftrightarrow x=0\)

Vậy phương trình có nghiệm là \(x=0\)

b. Phương trình (*) \(\Leftrightarrow t^2+1=-2m\left(t+1\right)\Leftrightarrow\frac{t^2+1}{t+1}=-2m\)

Xét hàm số \(f\left(t\right)=\frac{t^2+1}{t+1};t\in\)(0;1]

Ta có : \(f'\left(t\right)=\frac{t^2+2t+1}{\left(t+1\right)^2}\Rightarrow f'\left(t\right)=0\Leftrightarrow=-1+\sqrt{2}\)

t f'(t) f(t) 0 1 0 - + 1 1 -1 + căn 2 2 căn 2 - 2

Suy ra phương trình đã cho có nghiệm đúng

\(\Leftrightarrow2\sqrt{2}-2\le-2m\le1\Leftrightarrow\sqrt{2}-1\ge m\ge-\frac{1}{2}\)

Vậy \(m\in\left[-\frac{1}{2};\sqrt{2}-1\right]\) là giá trị cần tìm

26 tháng 11 2021

\(a,x^2-\left(2m-3\right)x+m^2=0-vô-ngo\)

\(\Leftrightarrow\Delta< 0\Leftrightarrow[-\left(2m-3\right)]^2-4m^2< 0\Leftrightarrow m>\dfrac{3}{4}\)

\(b,\left(m-1\right)x^2-2mx+m-2=0\)

\(m-1=0\Leftrightarrow m=1\Rightarrow-2x-1=0\Leftrightarrow x=-0,5\left(ktm\right)\)

\(m-1\ne0\Leftrightarrow m\ne1\Rightarrow\Delta'< 0\Leftrightarrow\left(-m\right)^2-\left(m-2\right)\left(m-1\right)< 0\Leftrightarrow m< \dfrac{2}{3}\)

\(c,\left(2-m\right)x^2-2\left(m+1\right)x+4-m=0\)

\(2-m=0\Leftrightarrow m=2\Rightarrow-6x+2=0\Leftrightarrow x=\dfrac{1}{3}\left(ktm\right)\)

\(2-m\ne0\Leftrightarrow m\ne2\Rightarrow\Delta'< 0\Leftrightarrow[-\left(m+1\right)]^2-\left(4-m\right)\left(2-m\right)< 0\Leftrightarrow m< \dfrac{7}{8}\)

 

 

 

Trắc nghiệm (4 điểm) Câu 1: Bất phương trình 2x  3  2x  6  3x 1 xác định khi nào? x1 x1  x  1 A. x1  x   1 B. x1  x  1 C. x1  x   1 D. x1  3   3 Câu 2: Tập nghiệm của bất phương trình 2x 13x  2  0 là A. B.  3 D. 2;  3 A.;21; B. 2;1 C. 1;2 ...
Đọc tiếp

Trắc nghiệm (4 điểm)
Câu 1: Bất phương trình 2x  3  2x  6  3x 1 xác định khi nào?
x1 x1
 x  1 A. x1
 x   1 B. x1
 x  1 C. x1
 x   1 D. x1
 3 
 3
Câu 2: Tập nghiệm của bất phương trình 2x 13x  2  0 là
A. B.
 3 D. 2;
 3 A.;21; B. 2;1 C. 1;2
323223 3 Câu 3: Nhị thức f x   2x  5 có bảng xét dấu như thế nào?
C.
Câu 4: Tập nghiệm của bất phương trình x 1  1 là
D.
x3
A. B.3; C. ;5 D. 
Câu5:Bấtphươngtrình 2xm2 10 cótậpnghiệmtrongkhoảng ;4 khi và chỉ khi:
A. m3 B. 3m3 C. m3 Câu 6: Điều kiện để tam thức bâc hai f x  ax2  bx  c
A. a0 B. a0 C. a0   0   0   0
D. m 3
a  0 lớn hơn 0 với mọi x là:
D. a0   0
Câu7:Bấtphươngtrình 2x2 5x30 cótậpnghiệmlà
D. ;31;   
A. 1;3 B. ;31; C.;13; 2 2   2
2 
Câu 8: Tập nghiệm của bất phương trình A. (;2](1;1)[2;)
C. (;2][2;)
Câu 9: Tập nghiệm của bất phương trình
3  1 là x2 1
B. [2;1)(1;2) D. (-1; 1)
2xx2 1
3  2x  x2  0 là
1
Mã đề 101
A. (3;1][0;1)(1;) B. (3;1][0;) C.(-;-3)[-1;0](1;+ ) D.(-3;-1)(1;+ )
Câu 10: Tổng của các nghiệm nguyên của hệ bất phương trình x  5  0 là: x50
A. 0 B. 5 C. 15 D. Không xác định được II. Tự luận (6 điểm)
Câu 1: Giải các bất phương trình sau
a) (3x2 – 10x + 3)(4x – 5) > 0
b) 3x47  4x47 3x 1 2x 1
2x3 x1
d) x27x632x
Câu 2. Tìm giá trị của m để các bất phương trình sau vô nghiệm.
(m–3)x2 +(m+2)x–4>0

1
21 tháng 4 2020

?

10 tháng 8 2018

a) Với m = 1 phương trình trở thành:

x 2  + 4x + 4 = 0 ⇔ (x + 2 ) 2  = 0 ⇔ x = -2

Vậy x = -2

b) Ta có: Δ' = m 2  - 5m + 4

Phương trình có hai nghiệm phân biệt

⇔ Δ' > 0 ⇔ m 2  - 5m + 4 > 0 Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 2)

Do x1 < x2 < 1

Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 2)

16 tháng 3 2017

Đáp án: A