K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2019

Đáp án: A

(C): x 2  + y 2  + 4x - 6y - 3 = 0 ⇔ (x + 2 ) 2  + (y - 3 ) 2  = 16

Đường tròn (C) có tâm I(-2;3) Đề kiểm tra 45 phút Hình học 10 Chương 3 có đáp án (Đề 3)

Gọi d là phương trình tiếp tuyến của (C) tại M. Suy ra, d đi qua M và nhận IM là vecto pháp tuyến

⇒ d: 4(x - 2) + 0.(y - 3) = 0 ⇔ x - 2 = 0

NV
25 tháng 4 2020

Bài 2:

Đường tròn \(\left(C_1\right)\) tâm \(\left(1;2\right)\) bán kính \(R=2\)

a/ Không hiểu đề bài, bạn ghi rõ thêm ra được chứ?

Tiếp tuyến đi qua giao điểm của \(\Delta_1;\Delta_2\) hay tiếp tuyến tại các giao điểm của \(\Delta_1\)\(\Delta_2\) với đường tròn?

b/ Lại không hiểu đề nữa, điểm I trong tam giác \(IAB\) đó là điểm nào vậy bạn?

NV
25 tháng 4 2020

Bài 1b/

\(\Delta'\) nhận \(\left(2;1\right)\) là 1 vtpt

Gọi vtpt của d' có dạng \(\left(a;b\right)\Rightarrow\frac{\left|2a+b\right|}{\sqrt{2^2+1^2}.\sqrt{a^2+b^2}}=\frac{1}{\sqrt{2}}\)

\(\Leftrightarrow\sqrt{2}\left|2a+b\right|=\sqrt{5\left(a^2+b^2\right)}\Leftrightarrow2\left(2a+b\right)^2=5\left(a^2+b^2\right)\)

\(\Leftrightarrow3a^2+8ab-3b^2=0\Rightarrow\left[{}\begin{matrix}a=-3b\\3a=b\end{matrix}\right.\)

\(\Rightarrow\) d' có 2 vtpt thỏa mãn là \(\left(3;-1\right)\)\(\left(1;3\right)\)

TH1: d' có pt dạng \(3x-y+c=0\)

\(d\left(I;d'\right)=R\Leftrightarrow\frac{\left|3.1-3+c\right|}{\sqrt{3^2+1^2}}=2\Rightarrow c=\pm2\sqrt{10}\)

\(\Rightarrow\left[{}\begin{matrix}3x-y+2\sqrt{10}=0\\3x-y-2\sqrt{10}=0\end{matrix}\right.\)

TH2: d' có dạng \(x+3y+c=0\)

\(d\left(I;d'\right)=R\Leftrightarrow\frac{\left|1+3.3+c\right|}{\sqrt{10}}=2\Leftrightarrow\left|c+10\right|=2\sqrt{10}\Rightarrow c=-10\pm2\sqrt{10}\)

\(\Rightarrow\left[{}\begin{matrix}x+3y-10+2\sqrt{10}=0\\x+3y-10-2\sqrt{10}=0\end{matrix}\right.\)

NV
7 tháng 4 2019

\(\left(C\right):\) \(\left(x-1\right)^2+\left(y+3\right)^2=5\) \(\Rightarrow\left\{{}\begin{matrix}I\left(1;-3\right)\\R=\sqrt{5}\end{matrix}\right.\)

a/ Gọi \(d'//d\) \(\Rightarrow\) phương trình d' có dạng: \(2x+y+c=0\)

Do d' tiếp xúc (C) \(\Rightarrow d\left(I;d'\right)=R\)

\(\Leftrightarrow\frac{\left|2.1-3.1+c\right|}{\sqrt{2^2+1^2}}=\sqrt{5}\) \(\Leftrightarrow\left|c-1\right|=5\Rightarrow\left[{}\begin{matrix}c=6\\c=-4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x+y+6=0\\2x+y-4=0\end{matrix}\right.\)

- Với \(2x+y+6=0\Rightarrow y=-2x-6\)

\(\Rightarrow x^2+\left(-2x-6\right)^2-2x+6\left(-2x-6\right)+5=0\)

\(\Rightarrow x=-1\Rightarrow y=-4\Rightarrow A\left(-1;-4\right)\)

- Với \(2x+y-4=0\Rightarrow y=4-2x\)

\(\Rightarrow x^2+\left(4-2x\right)^2-2x+6\left(4-2x\right)+5=0\)

\(\Rightarrow x=3\Rightarrow y=-2\Rightarrow B\left(3;-2\right)\)

b/

Gọi \(d_1\) là đường thẳng vuông góc với \(d\Rightarrow d_1\) có dạng: \(x-2y+c=0\)

Do \(d_1\) tiếp xúc (C) nên \(d\left(I;d_1\right)=R\)

\(\Leftrightarrow\frac{\left|1.1-2.\left(-3\right)+c\right|}{\sqrt{1^2+\left(-2\right)^2}}=\sqrt{5}\) \(\Leftrightarrow\left|c+7\right|=5\Rightarrow\left[{}\begin{matrix}c=-2\\c=-12\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x-2y-2=0\\x-2y-12=0\end{matrix}\right.\)

Bạn tự thay vào tính tiếp điểm như bài trên

NV
25 tháng 4 2020

Bài 2:

Đường tròn (C) tâm \(I\left(-2;-\frac{7}{2}\right)\) bán kính \(R=\frac{\sqrt{133}}{2}\)

Sao số xấu dữ vậy ta? Số to như vầy tính toán mệt lắm

Gọi tiếp tuyến d của đường tròn có dạng:

\(a\left(x-2\right)+b\left(y-6\right)=0\Leftrightarrow ax+by-2a-6b=0\)

d tiếp xúc (C) \(\Leftrightarrow d\left(I;d\right)=R\)

\(\Leftrightarrow\frac{\left|-2a-\frac{7}{2}b-2a-6b\right|}{\sqrt{a^2+b^2}}=\frac{\sqrt{133}}{2}\)

\(\Leftrightarrow\left|6a+19b\right|=\sqrt{133\left(a^2+b^2\right)}\)

\(\Leftrightarrow97a^2-228ab-288b^2=0\)

Chắc bạn ghi sai đề thật, nghiệm pt này xấu hủy hoại, chắc chẳng ai cho đề kiểu như vầy hết

NV
25 tháng 4 2020

Bài 1:

Gọi d' là đường thẳng qua A và vuông góc d

Phương trình d':

\(4\left(x-1\right)+3\left(y+7\right)=0\Leftrightarrow4x+3y+17=0\)

Tâm của (C) nằm trên d' nên tọa độ có dạng \(I\left(a;\frac{-4a-17}{3}\right)\Rightarrow\overrightarrow{AI}=\left(a-1;\frac{4-4a}{3}\right)\)

\(IA^2=R^2\Leftrightarrow\left(a-1\right)^2+\left(\frac{4-4a}{3}\right)^2=25\)

\(\Rightarrow\left(a-1\right)^2=9\Rightarrow\left[{}\begin{matrix}a=4\\a=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}I\left(4;-11\right)\\I\left(-2;-3\right)\end{matrix}\right.\)

Có 2 đường tròn thỏa mãn:

\(\left[{}\begin{matrix}\left(x-4\right)^2+\left(y+11\right)^2=25\\\left(x+2\right)^2+\left(y+3\right)^2=25\end{matrix}\right.\)

12 tháng 4 2016

a)     Tâm I(2 ; -4), R = 5

b)    Đường tròn có phương trình:    (x – 2 )2 + (y + 4)2  = 25

Thế tọa độ A(-1 ; 0) vào vế trái, ta có :

(-1- 2 )2 + (0 + 4)2  = 32 + 42 = 25

Vậy A(-1 ;0) là điểm thuộc đường tròn.

Áp dụng công thức tiếp tuyến (Xem sgk)

Ta được pt tiếp tuyến với đường tròn tai A là:

(-1 – 2)(x – 2) + (0 + 4)(y + 4) = 25   <=>   3x – 4y + 3 = 0

Chú ý:

1. Theo tính chất tiếp tuyến với đường tròn tại 1 điểm thuộc đường tròn thì vuông góc với bán kính đi qua tiếp điểm, ta có thể giải câu này như sau:

Vectơ    = (-3; 4)

Tiếp tuyến đi qua A(-1; 0) và nhận  làm một vectơ pháp tuyến có phương trình:

-3(x + 1) + 4(y – 0) = 0  ,<=> 3x – 4y + 3 = 0

31 tháng 3 2020

a) Giao điểm d1 và d2

\(\left\{{}\begin{matrix}x+3y-1=0\\x-3y-5=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=1\end{matrix}\right.\) => A (-2;1)

Đường thẳng d3 có \(\overrightarrow{n_{d3}}=\left(2;-1\right)\) . Delta vuông góc với d3 nên có

\(\overrightarrow{u_{\Delta}}=\left(2;-1\right)\) \(\Rightarrow\overrightarrow{n_{\Delta}}=\left(-1;-2\right)\)

PTđt delta

\(-1\left(x+2\right)+\left(-2\right)\left(y-1\right)=0\)

\(\Leftrightarrow-x-2y+1=0\)

b) Tương tự, tìm được đường thẳng delta đi qua B(-1;-1)

Hệ số k = tan45 = 1 .

Tự xử nốt

26 tháng 4 2017

M N d d d1 d2 I

a) Tọa độ giao điểm của (C) và d là nghiệm của hệ phương trình:

\(\left\{{}\begin{matrix}x^2+y^2-x-7y=0\left(1\right)\\3x+4y-3=0\left(2\right)\end{matrix}\right.\)

Từ (2) => \(x=\dfrac{3-4y}{3}\) thay vào (1) ta được:

\(\left(\dfrac{3-4y}{3}\right)^2+y^2-\dfrac{3-4y}{3}-7y=0\)

<=> 16y2-24y+9+9y2-9+12y-63y=0

<=>25y2-75y=0

<=> y=0=>x=1

hoặc y=3=>x=-3

Gọi 2 giao điểm là M và N =>tọa độ M(1;0) và N(-3;3)

b) Viết lại phương trình (C): \(\left(x-\dfrac{1}{2}\right)^2+\left(y-\dfrac{7}{2}\right)^2=\dfrac{25}{2}\)

=>tọa độ tâm I(0,5;3,5)

Gọi d1,d2 là các tiếp tuyến tại M và N

VTPT của d1 là: \(\overrightarrow{IM}=\left(\dfrac{1}{2};-\dfrac{7}{2}\right)\) và M thuộc d1

=> phương trình d1: \(\dfrac{1}{2}\left(x-1\right)-\dfrac{7}{2}y=0\)

hay d1: x-7y-1=0

Bằng cách tính tương tự ta được phương trình tiếp tuyến d2:

d2:7x+y+18=0

c)Tọa độ giao điểm d1 và d2 là nghiệm của hệ:

\(\left\{{}\begin{matrix}x-7y-1=0\\7x+y+18=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{2}\\y=-\dfrac{1}{2}\end{matrix}\right.\)

=>tọa độ giao điểm là (-2,5;-0,5)

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

9 tháng 6 2022

bvtiv

30 tháng 3 2017

a) Ta có : -2a = -2 => a = 1

-2b = -2 => b = 1 => I(1; 1)

R2 = a2 + b2 – c = 12 + 12 – (-2) = 4 => R = 2

b) Tương tự, ta có : I \(\left(-\dfrac{1}{2};\dfrac{1}{4}\right)\); R = 1

c) I(2; -3); R = 4