Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C.
Phương pháp
Sử dụng tính chất hai góc bù nhau cos x = cos π − x
Giải phương trình lượng giác cơ bản
Cách giải
Vậy phương trình có 2 nghiệm thuộc − π ; π
Đáp án C
PT 2 x = − π 4 + k 2 π 2 x = 5 π 4 + k 2 π ⇔ x = − π 8 + k π x = 5 π 8 + k π k ∈ ℤ
Vì x ∈ 0 ; π ⇒ 0 < − π 8 + k π < π 0 < 5 π 8 + k π < π ⇔ 1 8 < k < 9 8 − 5 8 < k < 3 8 ⇒ k = 1 k = 0 ⇒ x = 7 π 8 x = 5 π 8
Do đó phương trình f[f(sinx)] = m có nghiệm thuộc khoảng 0 ; π khi và chỉ khi phương trình
f(t) = m có nghiệm thuộc nửa khoảng [-1;1]
Dựa vào đồ thị, suy ra
Chọn C.
Đáp án D.
Điều kiện: x 2 − 2018 > 0.
Ta có
ln x 2 + 1 ln x 2 − 2018 = 0 ⇔ ln x 2 + 1 = 0 ln x 2 − 2018 = 0
⇔ x 2 + 1 = 1 x 2 − 2018 = 1 ⇔ x 2 = 0 l x 2 = 2019 ⇔ x = 2019 x = − 2019
nên phương trình có 2 nghiệm.
Đáp án C.
Điều kiện cos 3 x ≢ 0 cos x ≢ 0 ⇔ 3 x ≢ π 2 + k π x ≢ π 2 + k π ⇔ x ≢ π 6 + k π 3 x ≢ π 2 + k π
⇔ x ≢ π 6 + k π 3 , k ∈ ℤ .
Phương trình tan 3 x = tan x ⇔ sin 3 x cos 3 x = sin x cos x ⇔ sin 3 x . cos x - cos 3 x . sin x = 0
⇔ sin 2 x = 0 ⇔ 2 x = k π ⇔ x = k π 2 , k ∈ ℤ . Do x ≢ π 6 + k π 3 nên x = k π , k ∈ ℤ .
Nếu x ∈ 0 ; 2018 π thì 0 < k π < 2018 π ⇔ 0 < k < 2018
→ k ∈ ℤ k ∈ 1 ; 2 ; . . . . ; 2017 . . Vậy có 2017 - 1 + 1 = 2017 giá trị k nguyên thỏa mãn nên phương trình có 2017 nghiệm.