Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
1.
\((x^2-6x)^2-2(x-3)^2+2=0\)
\(\Leftrightarrow (x^2-6x)^2-2(x^2-6x+9)+2=0\)
\(\Leftrightarrow (x^2-6x)^2-2(x^2-6x)-16=0\)
Đặt $x^2-6x=a$ thì pt trở thành:
$a^2-2a-16=0$
$\Leftrightarrow a=1\pm \sqrt{17}$
Nếu $a=1+\sqrt{17}$
$\Leftrightarrow x^2-6x=1+\sqrt{17}$
$\Leftrightarrow (x-3)^2=10+\sqrt{17}$
$\Rightarrow x=3\pm \sqrt{10+\sqrt{17}}$
Nếu $a=1-\sqrt{17}$
$\Rightarrow x=3\pm \sqrt{10-\sqrt{17}}$
Vậy.........
2.
$x^4-2x^3+x=2$
$\Leftrightarrow x^3(x-2)+(x-2)=0$
$\Leftrightarrow (x-2)(x^3+1)=0$
$\Leftrightarrow (x-2)(x+1)(x^2-x+1)=0$
Thấy rằng $x^2-x+1=(x-\frac{1}{2})^2+\frac{3}{4}>0$ nên $(x-2)(x+1)=0$
$\Rightarrow x=2$ hoặc $x=-1$
Vậy.......
Bài 2:
1.
ĐKXĐ: $x\neq 1$. Ta có:
\(x^2+(\frac{x}{x-1})^2=8\)
\(\Leftrightarrow x^2+(\frac{x}{x-1})^2+\frac{2x^2}{x-1}=8+\frac{2x^2}{x-1}\)
\(\Leftrightarrow (x+\frac{x}{x-1})^2=8+\frac{2x^2}{x-1}\)
\(\Leftrightarrow (\frac{x^2}{x-1})^2=8+\frac{2x^2}{x-1}\)
Đặt $\frac{x^2}{x-1}=a$ thì pt trở thành:
$a^2=8+2a$
$\Leftrightarrow (a-4)(a+2)=0$
Nếu $a=4\Leftrightarrow \frac{x^2}{x-1}=4$
$\Rightarrow x^2-4x+4=0\Leftrightarrow (x-2)^2=0\Rightarrow x=2$ (tm)
Nếu $a=-2\Leftrightarrow \frac{x^2}{x-1}=-2$
$x^2+2x-2=0\Rightarrow x=-1\pm \sqrt{3}$ (tm)
Vậy........
2. ĐKXĐ: $x\neq 0; 2$
$(\frac{x-1}{x})^2+(\frac{x-1}{x-2})^2=\frac{40}{49}$
$\Leftrightarrow (\frac{x-1}{x}+\frac{x-1}{x-2})^2-\frac{2(x-1)^2}{x(x-2)}=\frac{40}{49}$
$\Leftrightarrow 4\left[\frac{(x-1)^2}{x(x-2)}\right]^2-\frac{2(x-1)^2}{x(x-2)}=\frac{40}{49}$
Đặt $\frac{(x-1)^2}{x(x-2)}=a$ thì pt trở thành:
$4a^2-2a=\frac{40}{49}$
$\Rightarrow 2a^2-a-\frac{20}{49}=0$
$\Rightarrow a=\frac{7\pm \sqrt{209}}{28}$
$\Leftrightarrow 1+\frac{1}{x(x-2)}=\frac{7\pm \sqrt{209}}{28}$
$\Leftrightarrow \frac{1}{x(x-2)}=\frac{-21\pm \sqrt{209}}{28}$
$\Rightarrow x(x-2)=\frac{28}{-21\pm \sqrt{209}}$
$\Rightarrow (x-1)^2=\frac{7\pm \sqrt{209}}{-21\pm \sqrt{209}}$.
Dễ thấy $\frac{7+\sqrt{209}}{-21+\sqrt{209}}< 0$ nên vô lý
Do đó $(x-1)^2=\frac{7-\sqrt{209}}{-21-\sqrt{209}}$
$\Leftrightarrow x=1\pm \sqrt{\frac{7-\sqrt{209}}{-21-\sqrt{209}}}$
Vậy........
1)
a)
\(2x+5=20+3x\\ \Leftrightarrow2x+5-20-3x=0\\ \Leftrightarrow-x-15=0\\ \Rightarrow x=-15\)
b)
\(2.5y+1.5=2.7y-1.5c\cdot2t-\frac{3}{5}=\frac{2}{3}-t\\ \Leftrightarrow2.5y+1.5-2.7y+3ct+\frac{3}{5}-\frac{2}{3}+t=0\\ \Leftrightarrow-0.2y+\frac{43}{30}+3ct+t=0\)
2)
a)
\(\frac{5x-4}{2}=\frac{16x+1}{7}\\ \Leftrightarrow\frac{35x-28}{14}-\frac{32x+2}{14}=0\\ \Leftrightarrow\frac{35x-28-32x-2}{14}=0\\ \Leftrightarrow\frac{3x-30}{14}=0\\ \Rightarrow3x-30=0\\ \Rightarrow x=10\)
b)
\(\frac{12x+5}{3}=\frac{2x-7}{4}\\ \Leftrightarrow\frac{48x+20}{12}-\frac{6x-21}{14}=0\\ \Leftrightarrow\frac{48x+20-6x+21}{12}=0\\ \Leftrightarrow\frac{42x+41}{12}=0\\ \Rightarrow42x+41=0\\ \Rightarrow x=-\frac{41}{42}\)
3)
a)
\(\left(x-1\right)^2-9=0\\ \Leftrightarrow\left(x-1-3\right)\cdot\left(x-1+3\right)=0\\ \Leftrightarrow\left(x-4\right)\cdot\left(x+2\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-4=0\\x+2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)
6)x4 - x3- 10x2+2x+4=0
<=>x4 - x3- 10x2+2x+4=(x2-3x-2)(x2+2x-2)
=>(x2-3x-2)(x2+2x-2)=0
Th1:x2-3x-2=0
denta(-3)2-(-4(1.2))=17
\(x_{1,2}=\frac{-b\pm\sqrt{\Delta}}{2a}=\frac{-3\pm\sqrt{17}}{2}\)
Th2:x2+2x-2=0
denta:22-(-4(1.2))=12
\(x_{1,2}=\frac{-b\pm\sqrt{\Delta}}{2a}=\frac{-2\pm\sqrt{12}}{2}\)
=>x=-căn bậc hai(3)-1,
x=3/2-căn bậc hai(17)/2,
x=căn bậc hai(3)-1,
x=căn bậc hai(17)/2+3/2
theo bài ra ta có
n = 8a +7=31b +28
=> (n-7)/8 = a
b= (n-28)/31
a - 4b = (-n +679)/248 = (-n +183)/248 + 2
vì a ,4b nguyên nên a-4b nguyên => (-n +183)/248 nguyên
=> -n + 183 = 248d => n = 183 - 248d (vì n >0 => d<=0 và d nguyên )
=> n = 183 - 248d (với d là số nguyên <=0)
vì n có 3 chữ số lớn nhất => n<=999 => d>= -3 => d = -3
=> n = 927
a) x3+4x2+x-6=0
<=> x3+x2-2x+3x2+3x-6=0
<=>x(x2+x-2)+3(x2+x-2)=0
<=>(x+3)(x2+x-2)=0
<=>(x+3)(x2+2x-x-2)=0
<=>(x+3)[x(x+2)-(x+2)]=0
<=>(x+3)(x-1)(x+2)=0
=> x+3=0 hay
x-1=0 hay
x+2=0
<=> x=-3 hay x=1 hay x=-2
b)x3-3x2+4=0
\(\Leftrightarrow x^3-4x^2+4x+x^2-4x+4=0\)
\(\Leftrightarrow x\left(x^2-4x+4\right)+\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)^2=0\)
\(\Rightarrow\left\{\begin{matrix}x+1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}x=-1\\x=2\end{matrix}\right.\)
\(\left(x^2+x\right)^2+4\left(x^2+x\right)=12\)
đặt \(\left(x^2+x\right)=t\) ta có
\(t^2+4t-12=0\)
\(\Leftrightarrow t^2+6t-2t-12=0\)
\(\Leftrightarrow t\left(t+6\right)-2\left(t+6\right)=0\)
\(\Leftrightarrow\left(t-2\right)\left(t+6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t-2=0\\t+6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}t=2\\t=-6\end{cases}}\)
khi đó giả lại biến \(\left(x^2+x\right)\) rồi làm như bình thường
a: \(\left(3x-1\right)^2-\left(x+3\right)^3=\left(2-x\right)\left(x^2+2x+4\right)\)
\(\Leftrightarrow9x^2-6x+1-x^3-9x^2-27x-27=8-x^3\)
\(\Leftrightarrow-x^3-33x-26-8+x^3=0\)
=>-33x=34
hay x=-34/33
b: \(\left(x+1\right)\left(x-1\right)\left(x^2+1\right)-\left(x^2-1\right)^2=2\)
\(\Leftrightarrow\left(x^2+1\right)\left(x^2-1\right)-\left(x^2-1\right)^2=2\)
\(\Leftrightarrow x^4-1-x^4+2x^2-1=2\)
\(\Leftrightarrow2x^2=4\)
hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)
c: \(x^2-2\sqrt{3}x+3=0\)
\(\Leftrightarrow\left(x-\sqrt{3}\right)^2=0\)
hay \(x=\sqrt{3}\)
d: \(\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)-\left(x-\sqrt{2}\right)^2=0\)
\(\Leftrightarrow\left(x-\sqrt{2}\right)\left(x+\sqrt{2}-x+\sqrt{2}\right)=0\)
\(\Leftrightarrow x-\sqrt{2}=0\)
hay \(x=\sqrt{2}\)
Phương trình A là phương trình bậc hai một ẩn vì a<>0
\(\sqrt{2}t^2-2t+4=0\)
\(\text{Δ}=\left(-2\right)^2-4\cdot\sqrt{2}\cdot4=4-16\sqrt{2}< 0\)
Do đó; Phương trình vô nghiệm