K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 8

\(\overrightarrow{DE}=\left(-1;1;2\right)\)\(\overrightarrow{DF}=\left(2;-1;-1\right)\)

\(\left[\overrightarrow{DE},\overrightarrow{DF}\right]=\left(1;3;-1\right)\)

\(\Rightarrow\left(DEF\right)\) nhận (1;3;-1) là 1 vtpt

Phương trình:

\(1\left(x-3\right)+3\left(y-0\right)-1\left(z-2\right)=0\)

\(\Leftrightarrow x+3y-z-1=0\)

17 tháng 11 2019

NV
23 tháng 11 2021

\(\overrightarrow{MI}=\left(2;-3;-3\right)\)

(P) tiếp xúc (I) tại M nên nhận (2;-3;-3) là 1 vtpt

Phương trình:

\(2\left(x-1\right)-3\left(y-4\right)-3\left(z-2\right)=0\)

\(\Leftrightarrow2x-3y-3z+16=0\)

NV
6 tháng 3 2023

\(\overrightarrow{AB}=\left(1;2;3\right)\) ; \(\overrightarrow{CD}=\left(1;1;1\right)\)

\(\left[\overrightarrow{AB};\overrightarrow{CD}\right]=\left(-1;2;-1\right)=-\left(1;-2;1\right)\)

Phương trình (P):

\(1\left(x-1\right)-2y+1\left(z-1\right)=0\Leftrightarrow x-2y+z-2=0\)

6 tháng 3 2023

Để tìm phương trình mặt phẳng (P) ta cần tìm được vector pháp tuyến của mặt phẳng. Vì mặt phẳng (P) song song với đường thẳng AB nên vector pháp tuyến của (P) cũng vuông góc với vector chỉ phương của AB, tức là AB(1-0;2-0;4-1)=(1;2;3).

Vì (P) đi qua C(1;0;1) nên ta dễ dàng tìm được phương trình của (P) bằng cách sử dụng công thức phương trình mặt phẳng:

3x - 2y - z + d = 0, trong đó d là vế tự do.

Để tìm d, ta chỉ cần thay vào phương trình trên cặp tọa độ (x;y;z) của điểm C(1;0;1):

3(1) -2(0) - (1) + d = 0

⇒ d = -2

Vậy phương trình của mặt phẳng (P) là:

3x - 2y - z - 2 = 0,

và đáp án là B.

22 tháng 4 2018

Chọn C.

Mặt phẳng (P): 3x + 5y – z – 2 = 0 có VTPT 

Đường thẳng

5 tháng 12 2018

Chọn A

26 tháng 9 2017

Chọn C

17 tháng 11 2018

Chọn A

Phương trình tham số của 

Ta có M = d (P) nên 2 (2+3t)-3 (-1+t)-5-t-6=0 ó t = 2 => M (8 ; 1 ; -7)

VTCP của Δ

Δ đi qua M có VTCP  nên có phương trình:

1 tháng 10 2019

NV
27 tháng 2 2021

a. Mặt phẳng (P) có (3;-2;2) là 1 vtpt nên d nhận (3;-2;2) là 1 vtcp

Phương trình tham số d: \(\left\{{}\begin{matrix}x=1+3t\\y=2-2t\\z=-1+2t\end{matrix}\right.\)

b. \(\overrightarrow{n_{\left(P\right)}}=\left(1;1;1\right)\) ; \(\overrightarrow{n_{\left(P'\right)}}=\left(1;-1;1\right)\)

\(\left[\overrightarrow{n_{\left(P\right)}};\overrightarrow{n_{\left(P'\right)}}\right]=\left(2;0;-2\right)=2\left(1;0;-1\right)\)

\(\Rightarrow\) d nhận (1;0;-1) là 1 vtcp nên pt có dạng: \(\left\{{}\begin{matrix}x=1+t\\y=-2\\z=3-t\end{matrix}\right.\)

c. \(\overrightarrow{u_{\Delta}}=\left(3;2;1\right)\) ; \(\overrightarrow{u_{\Delta'}}=\left(1;3;-2\right)\)

\(\left[\overrightarrow{u_{\Delta}};\overrightarrow{u_{\Delta'}}\right]=\left(-7;7;7\right)=7\left(-1;1;1\right)\)

Đường thẳng d nhận (-1;1;1) là 1 vtcp nên pt có dạng: \(\left\{{}\begin{matrix}x=-1-t\\y=1+t\\z=3+t\end{matrix}\right.\)

11 tháng 10 2017

Đáp án B

Điểm M(x,y,z) cách đều hai mặt phẳng (P) và (Q) khi và chỉ khi:

d(M ; (P)) = d(M ; (Q))