Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(2x+1\ge0\Rightarrow x\ge-\dfrac{1}{2}\)
Khi đó pt đã cho tương đương:
\(x^2+2x+2m=\left(2x+1\right)^2\)
\(\Leftrightarrow x^2+2x+2m=4x^2+4x+1\)
\(\Leftrightarrow3x^2+2x+1=2m\)
Xét hàm \(f\left(x\right)=3x^2+2x+1\) trên \([-\dfrac{1}{2};+\infty)\)
\(-\dfrac{b}{2a}=-\dfrac{1}{3}< -\dfrac{1}{2}\)
\(f\left(-\dfrac{1}{2}\right)=\dfrac{3}{4}\) ; \(f\left(\dfrac{1}{3}\right)=\dfrac{2}{3}\)
\(\Rightarrow\) Pt đã cho có 2 nghiệm pb khi và chỉ khi \(\dfrac{2}{3}< 2m\le\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{1}{3}< m\le\dfrac{3}{8}\)
\(\Rightarrow P=\dfrac{1}{8}\)
3.
Đặt \(x^2=t\ge0\Rightarrow\left[{}\begin{matrix}x=\sqrt{t}\\x=-\sqrt{t}\end{matrix}\right.\)
Pt trở thành: \(t^2-3mt+m^2+1=0\) (1)
Pt đã cho có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm dương pb
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=9m^2-4\left(m^2+1\right)>0\\t_1+t_2=3m>0\\t_1t_2=m^2+1>0\end{matrix}\right.\) \(\Rightarrow m>\dfrac{2}{\sqrt{5}}\)
Ta có:
\(M=x_1+x_2+x_3+x_4+x_1x_2x_3x_4\)
\(=-\sqrt{t_1}-\sqrt{t_2}+\sqrt{t_1}+\sqrt{t_2}+\left(-\sqrt{t_1}\right)\left(-\sqrt{t_2}\right)\sqrt{t_1}.\sqrt{t_2}\)
\(=t_1t_2=m^2+1\) với \(m>\dfrac{2}{\sqrt{5}}\)
TH1: `m=0 `
`2x>0 <=> x>0`
`=>` Không thỏa mãn.
TH2: `m>0`
Bất PT có tập nghiệm là `RR <=> \Delta'<0`
`<=> (m-1)^2-m.4m<0`
`<=> m<-1 ; 1/3 <m`
Vậy `m in (0;+∞)` thỏa mãn.
TH1 là m=0 thì TH2 là \(m\ne0\)
Bpt có tập nghiệm là R <=> \(\left\{{}\begin{matrix}a>0\\\Delta'< 0\end{matrix}\right.\)
Đáp án: m\(\in\left(\dfrac{1}{3};+\infty\right)\)
Để phương trình đã cho có hai nghiệm trái dấu khi:
a c = m 2 - m - 6 < 0 ⇔ - 2 < m < 3
Chọn đáp án D.
Ta có 2x – 4 >0
* Xét bất phương trình: mx – 1 <0 (*)
+ Nếu m = 0 thì ( *) luôn đúng với mọi x.
Khi đó, tập nghiệm của hệ bất phương trình là ( 2 ; + ∞ ) .
+ Nếu m > 0 thì từ (*) ⇔ m x < 1 ⇔ x < 1 m
Trong trường hợp này thì tập nghiệm của hệ bất phương trình không thể là ( 2 ; + ∞ ) .
+ Nếu m < 0 thì từ (*) ⇔ m x < 1 ⇔ x < 1 m
Do đó, để hệ bất phương trình đã cho có tập nghiệm là ( 2 ; + ∞ ) khi và chỉ khi 1 m < 2 ( luôn đúng vì m < 0).
Vậy tập hợp các giá trị m thỏa mãn là m ≤ 0 .
Ta có: ( 1 ) ⇔ x ≤ - m . Tập nghiệm của (1) là ( - ∞ ; - m ] .
( 2 ) ⇔ x > 5 . Tập nghiệm của (2) là 5 ; + ∞ .
Hệ đã cho có nghiệm khi và chỉ khi ( - ∞ ; - m ] ∩ 5 ; + ∞ . Điều này xảy ra khi và chỉ khi 5 < - m ⇔ m < - 5 .
Đáp án là A.
Chọn B.
Phương trình (m + 2) x 2 - 3x + 2m - 3 = 0 có hai nghiệm trái dấu
Vậy phương trình (m + 2) x 2 - 3x + 2m - 3 = 0 có hai nghiệm trái dấu khi
khi m=0
khi m=0