K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2019

Ta có: 

m x + m = 3 x + m ⇔ m x + m 2 = 3 x + 3 m ⇔ m - 3 x = 3 m - m 2

Để phương trình đã cho có vô số nghiệm khi và chỉ khi:

m - 3 = 0 3 m - m 2 = 0 ⇔ m = 3 [ m = 0 ⇔ m = 3 m = 3

5 tháng 12 2021

A

5 tháng 12 2021

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-1=0\\m^2-2m-3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\pm1\\m\ne-1;m\ne3\end{matrix}\right.\Leftrightarrow m=1\)

Chọn A

16 tháng 3 2017

Đáp án: A

15 tháng 10 2019

Với m = 1 phương trình đã cho có dạng

2 x 2   +   2   =   0 .

Phương trình này vô nghiệm, nên phương án A bị loại. Với m = -1 phương trình đã cho trở thành phương trình bậc nhất 6x + 2 = 0 chỉ có một nghiệm nên phương án B bị loại.

Với m = 2 phương trình đã cho trở thành phương trình

3 x 2   –   3 x   +   2   =   0 .

Phương trình này vô nghiệm, nên phương án D bị loại.

Đáp án: C

26 tháng 3 2017

Đáp án: D

Để phương trình (3 – m )x – m 2 + 9 = 0 có vô số nghiệm thì

3 - m   = 0 m 2 - 9 = 0 ⇔ m = 3

NV
22 tháng 3 2022

a.

Pt có 2 nghiệm pb khi:

\(\left\{{}\begin{matrix}m+1\ne0\\\Delta'=\left(m+3\right)^2-\left(m+1\right)\left(-m+2\right)>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne-1\\2m^2+7m+7>0\left(\text{luôn đúng}\right)\end{matrix}\right.\) 

\(\Rightarrow m\ne-1\)

b.

BPT vô nghiệm khi \(\left(m^2-4m-5\right)x^2+2\left(m-5\right)-1< 0\) nghiệm đúng với mọi x

- Với \(m=-1\) ko thỏa mãn

- Với \(m=5\) thỏa mãn

- Với \(m\ne\left\{-1;5\right\}\)

\(\Rightarrow\left\{{}\begin{matrix}m^2-4m-5< 0\\\Delta'=\left(m-5\right)^2+m^2-4m-5< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-1< m< 5\\\left(m-5\right)\left(2m-4\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-1< m< 5\\2< m< 5\end{matrix}\right.\) \(\Rightarrow2< m< 5\)

Kết hợp lại ta được: \(2< m\le5\)

26 tháng 11 2021

\(a,x^2-\left(2m-3\right)x+m^2=0-vô-ngo\)

\(\Leftrightarrow\Delta< 0\Leftrightarrow[-\left(2m-3\right)]^2-4m^2< 0\Leftrightarrow m>\dfrac{3}{4}\)

\(b,\left(m-1\right)x^2-2mx+m-2=0\)

\(m-1=0\Leftrightarrow m=1\Rightarrow-2x-1=0\Leftrightarrow x=-0,5\left(ktm\right)\)

\(m-1\ne0\Leftrightarrow m\ne1\Rightarrow\Delta'< 0\Leftrightarrow\left(-m\right)^2-\left(m-2\right)\left(m-1\right)< 0\Leftrightarrow m< \dfrac{2}{3}\)

\(c,\left(2-m\right)x^2-2\left(m+1\right)x+4-m=0\)

\(2-m=0\Leftrightarrow m=2\Rightarrow-6x+2=0\Leftrightarrow x=\dfrac{1}{3}\left(ktm\right)\)

\(2-m\ne0\Leftrightarrow m\ne2\Rightarrow\Delta'< 0\Leftrightarrow[-\left(m+1\right)]^2-\left(4-m\right)\left(2-m\right)< 0\Leftrightarrow m< \dfrac{7}{8}\)

 

 

 

9 tháng 12 2018

(3 - m)x2 - 2(m + 3)x + m + 2 = 0 (2)

- Nếu 3 - m = 0 ⇔ m = 3 khi đó (2) trở thành -12x + 5 = 0 ⇔ x = 5/12

Do đó m = 3 không phải là giá trị cần tìm.

- Nếu 3 - m ≠ 0 ⇔ m ≠ 3 ta có:

Δ' = (m + 3)2 - (3 - m)(m + 2)

= m2 + 6m + 9 - 3m - 6 + m2 + 2m

= 2m2 + 5m + 3 = (m + 1)(2m + 3)

(2) vô nghiệm ⇔Δ' < 0⇔ (m + 1)(2m + 3) < 0 ⇔ m ∈ (-3/2; -1)

Vậy với m ∈ (-3/2; -1) thì phương trình vô nghiệm.