K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2016

TA CÓ: 

                   = 1+\(\frac{1}{2^2}\)+\(\frac{1}{3^2}\)+.....+\(\frac{1}{49^2}\)+\(\frac{1}{50^2}\)<1+ \(\frac{1}{1\times2}\)+\(\frac{1}{2\times3}\)+....+\(\frac{1}{49\times50}\)

                                                             = 1+ 1- \(\frac{1}{2}\) + \(\frac{1}{2}\) - \(\frac{1}{3}\) + ..... + \(\frac{1}{49}\) - \(\frac{1}{50}\)

                                                             = 1+ 1 - \(\frac{1}{50}\)

                                                             = 1+ \(\frac{49}{50}\) < 2

 Chứng tỏ A < 2

11 tháng 4 2017

ukm

24 tháng 4 2016

Ta có :

\(\frac{1}{1^2}< \frac{1}{1.2};\frac{1}{2^2}< \frac{1}{2.3};...;\frac{1}{50^2}< \frac{1}{49.50}\)

\(\Leftrightarrow\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}=1-\frac{1}{50}< 1< 2\)

Vậy A < 2

24 tháng 4 2016

\(\frac{1}{1^2}=1\)

\(\frac{1}{2^2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}\)

\(...\)

\(\frac{1}{50^2}< \frac{1}{49.50}\)

\(\Rightarrow\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

\(\Rightarrow A< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(\Rightarrow A< 1+1-\frac{1}{50}\)

\(\Rightarrow A< 2-\frac{1}{50}< 2\)

Vậy \(A< 2\)

 

23 tháng 3 2016

toán 7 à, lập bảng xét dấu r mở ngoặc ra

23 tháng 3 2016

giai chi tiet

 

25 tháng 4 2016

lớp mấy z

 

25 tháng 4 2016

lớp 7

16 tháng 4 2017

sai

8 tháng 9 2017

sai

Câu 1: 

Đa thức \(f\left(x\right)=x^2-5x\) nhận 0 và 5 làm nghiệm vì f(0)=f(5)=0

Câu 2: 

\(g\left(1\right)=1-6+5=0\)

nên x=1 là nghiệm của đa thức g(x)

2 tháng 4 2016

bài nào?

2 tháng 4 2016

bài nào?

3 tháng 4 2016

Mọi ng giúp em vs

3 tháng 4 2016

Chị chưa hc dến. Thông cảm nha.vui

30 tháng 3 2016

toán lớp mấy vậy