
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.




a) \(2x-\sqrt{x}=0\Leftrightarrow\sqrt{x}\left(2\sqrt{x}-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\left(N\right)\\x=\dfrac{1}{4}\left(N\right)\end{matrix}\right.\)
Kl: x=0, x=1/4
b) \(x-3\sqrt{x}+2=0\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=2\\\sqrt{x}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\left(N\right)\\x=1\left(N\right)\end{matrix}\right.\)
Kl: x=4, x=1
c) \(x+5\sqrt{x}-6< 0\) (*)
Đặt \(t=\sqrt{x}\) \(\left(t\ge0\right)\)
bpt (*) trở thành: \(t^2+5t-6< 0\) (**)
Xét pt bậc 2: \(t^2+5t-6=0\Leftrightarrow\left[{}\begin{matrix}t=1\\t=-6\end{matrix}\right.\)
Bpt (**) có nghiệm là \(-6< t< 1\)
Đối chiếu với đk, ta được: \(0\le t< 1\)
Vậy bpt (*) có nghiệm là \(0\le x< 1\)
Kl: 0 \< x <1
d) \(x-6\sqrt{x}+9\le0\Leftrightarrow\left(\sqrt{x}-3\right)^2\le0\) (*)
mà \(\left(\sqrt{x}-3\right)^2\ge0\)
nên bpt (*) chỉ xảy ra khi \(\left(\sqrt{x}-3\right)^2=0\Leftrightarrow x=9\left(N\right)\)
Kl: x=9
a) \(2x-\sqrt{x}=0\Leftrightarrow2\sqrt{x}\cdot\sqrt{x}-\sqrt{x}=0\Leftrightarrow\sqrt{x}\left(2\sqrt{x}-1\right)=0\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=0\\2\sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\\sqrt{x}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(N\right)\\x=\dfrac{1}{4}\left(N\right)\end{matrix}\right.\)
KL:....
b) \(x-3\sqrt{x}+2=0\) (*)
Đặt \(t=\sqrt{x}\left(t\ge0\right)\)
phương trình (*) trở thành: \(t^2-3t+2=0\)
\(\Delta=\left(-3\right)^2-4\cdot1\cdot2=1>0\)
phương trình có 2 nghiệm phân biệt:
\(\left[{}\begin{matrix}t=\dfrac{-\left(-3\right)+\sqrt{1}}{2\cdot1}\\t=\dfrac{-\left(-3\right)-\sqrt{1}}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}t=2\left(N\right)\\t=1\left(N\right)\end{matrix}\right.\)
\(t=2\Rightarrow\sqrt{x}=2\Rightarrow x=4\left(N\right)\)
\(t=1\Rightarrow\sqrt{x}=1\Rightarrow x=1\left(N\right)\)
Kl:.....

a)Đk:\(x\ge\frac{1}{2}\)
\(pt\Leftrightarrow4x^2-12x+4+4\sqrt{2x-1}=0\)
\(\Leftrightarrow\left(2x-1\right)^2-4\left(2x-1\right)-1+4\sqrt{2x-1}=0\)
Đặt \(t=\sqrt{2x-1}>0\Rightarrow\hept{\begin{cases}t^2=2x-1\\t^4=\left(2x-1\right)^2\end{cases}}\)
\(t^4-4t^2+4t-1=0\)
\(\Leftrightarrow\left(t-1\right)^2\left(t^2+2t-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}t-1=0\\t^2+2t-1=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}t=1\\t=\sqrt{2}-1\end{cases}\left(t>0\right)}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x=2-\sqrt{2}\end{cases}}\) là nghiệm thỏa pt

a/ \(=\left(x-\sqrt{7}\right)\left(x+\sqrt{7}\right)\)
b/ \(=\left(x-\sqrt{22}\right)\left(x+\sqrt{22}\right)\)
c/ sửa đề bài xíu: \(2\sqrt{7x}\Rightarrow2\sqrt{7}x\)
\(=\left(x+\sqrt{7}\right)^2\)
d/ sửa như câu c
\(=\left(x-\sqrt{23}\right)^2\)