Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-a\right)\left(x-b\right)+\left(x-b\right)\left(x-c\right)+\left(x-c\right)\left(x-a\right)=0\\ \Leftrightarrow x^2-ax-bx+ab+x^2-bx-cx+bc+x^2-cx-ax+ac=0\\ \Leftrightarrow3x^2-2\left(a+b+c\right)x+ab+bc+ca=0\left(1\right)\)
pt(1) là pt bậc 2 ẩn x có:
\(\Delta'=\left(-a-b-c\right)^2-3\left(ab+bc+ca\right)\\ =a^2+b^2+c^2+2ab+2bc+2ca-3\left(ab+bc+ca\right)\\ =a^2+b^2+c^2-ab-bc-ca\\ =\dfrac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\)
pt có no kép nên delta' =0
nên: \(\dfrac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\\ \Rightarrow a-b=b-c=c-a=0\\ \Rightarrow a=b=c\)
bonus: khi đó pt: \(3\left(x-a\right)^2=0\Leftrightarrow x-a=0\Leftrightarrow x=a\)
=> x=a=b=c
\(hpt\Leftrightarrow\int^{x^3=9y^2-27y+27\left(1\right)}_{\int^{y^3=9z^2-27z+27}_{z^3=9x^2-27x+27}}\)
Vì vai trò x ; y; z bình đẳng trong hệ ta g/s \(x\le y\le z\) (I)
Với \(x\le y\Rightarrow9x^2-27x+27\le9y^2-27y+27\Leftrightarrow z^3\le x^3\Leftrightarrow z\le x\) ( II )
\(x\le z\Rightarrow9x^2-27x+27\le9z^2-27z+27\Leftrightarrow z^3\le y^3\Leftrightarrow z\le y\) ( III )
Từ (I) ; ( II ) ; (III ) => x = y =z
Thay x = y vào pt (1) giải ra nghiệm
bài này mình cộng 3 hệ lại cuối cùng được ntn:
\(\left(x-3\right)^3+\left(y-3\right)^3+\left(z-3\right)^3=0\)
đến đây chả biết làm tn :3 ko nhớ HĐT \(A^3+B^3+C^3\) bằng gì nữa @@
Câu 1:
G/s \(\sqrt{7}\) là số hữu tỉ có thể viết dưới dạng phân số tối giản \(\frac{a}{b}\) \(\left(a,b\inℤ\right)\)
=> \(\frac{a}{b}=\sqrt{7}\)
<=> \(\left(\frac{a}{b}\right)^2=7\)
=> \(a^2=7b^2\)
=> \(a^2⋮b^2\) , mà theo đề bài phân số tối giản
=> a không chia hết cho b => a2 không chia hết cho b2
=> vô lý
=> \(\sqrt{7}\) là số vô tỉ
Câu 2:
a) \(\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
\(=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2\)
\(=\left(a^2c^2+a^2d^2\right)+\left(b^2c^2+b^2d^2\right)\)
\(=a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)\)
\(=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
b) Ta có: \(\left(ac+bd\right)^2=a^2c^2+2abcd+b^2d^2\)
\(=a^2c^2+2\sqrt{a^2d^2.b^2c^2}+b^2d^2\)
\(\le a^2c^2+a^2d^2+b^2c^2+b^2d^2=\left(a^2+b^2\right)\left(c^2+d^2\right)\) ( bất đẳng thức Cauchy )
Dấu "=" xảy ra khi: \(ad=bc\Leftrightarrow\frac{a}{c}=\frac{b}{d}\)
Giả sử rằng \(r=\frac{p}{q}\) là nghiệm hữu tỉ của phương trình, trong đó \(p,q\) là các số nguyên, nguyên tố cùng nhau (tức phân số \(\frac{p}{q}\) tối giản).
Ta có ngay \(ap^2+bpq+q^2c=0\to4a^2p^2+4abpq+4acq^2=0\to\left(2ap+bq\right)^2=\left(bq\right)^2-4acq^2\)
Nếu q là số chẵn thì \(ap^2\) là số chẵn và do đó p chẵn, mâu thuẫn với tính nguyên tố cùng nhau.
Nếu q là số lẻ thì \(bq,2ap+bq\) là các số lẻ. Mặt khác một số chính phương lẻ luôn chia 8 dư 1 nên ta
suy ra \(\left(2ap+bq\right)^2-\left(bq\right)^2\vdots8.\) Do đó \(4acpq\vdots8\to acpq\vdots2\to p\vdots2\). Từ phương trình đầu suy ra \(cq^2\vdots2\to q\vdots2\), vô lí.
Cách khác:
Đặt \(a=2p+1;b=2q+1;c=2r+1\left(p,q,r\in Z\right)\)
Giả sử phương trình \(ax^2+bx+c=0\) không có nghiệm hữu tỉ thì \(\Delta=b^2-4ac\) phải là số chính phương
Ta có:\(\Delta=\left(2q+1\right)^2-4\left(2r+1\right)\left(2p+1\right)\)
\(=4q^2+4q+1-\left(8r-4\right)\left(2p+1\right)\)
\(=4q^2+4q+1-\left(16pr+8r-8p-4\right)\)
\(=4q^2+4q-16pr+8r-8p+5\)
\(=8\left[\frac{q\left(q+1\right)}{2}-2pr+r-p\right]+5\equiv5\left(mod8\right)\)
vô lý vì số chính phương lẻ không thể chia 8 dư 5
=> đpcm
Đáp án là A