K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 10 2024

Nếu đề là \(\left(\dfrac{a+b}{b+c}+\dfrac{b-c}{b-a}\right).\dfrac{a-2b+3c}{a+c}\) thì có đúng đâu em

Em cứ thay thử \(a=1;b=2,c=\sqrt{3}\) thỏa mãn \(a^2+2b^2=3c^2\) vào biểu thức là thấy

Kết quả ko phải 1 số nguyên dương

9 tháng 10 2024

nhưng c có thể bằng \(-\sqrt{3}\) mà

1 tháng 4 2017

áp dụng BĐT bunhia... ta có 

\(\left(a+2b\right)^2=\left(1.a+\sqrt{2}\sqrt{2}b\right)^2\le\left(1+2\right)\left(a^2+2b^2\right)\le3.3c^2=9c^2\)

\(\Rightarrow a+2b\le3c\)

áp dụng cosi ta có 

\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge3\sqrt[3]{xyz}.3\sqrt[3]{\frac{1}{xyz}}=9\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)

áp dụng BDT trên ta có \(\frac{1}{a}+\frac{2}{b}=\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\ge\frac{9}{a+b+b}=\frac{9}{a+2b}\ge\frac{9}{3c}=\frac{3}{c}\left(đpcm\right)\)

dấu = xảy ra khi a=b=c

4 tháng 10 2016

a) \(9\left(a+b\right)^2-4\left(a-2b\right)^2\)

\(=\left[3\left(a+b\right)+2\left(a-2b\right)\right]\left[3\left(a+b\right)-2\left(a-2b\right)\right]\)

\(=\left(3a+3b+2a-4b\right)\left(3a+3b-2a+4b\right)\)

\(=\left(5a-b\right)\left(a+7b\right)\)

b) \(\left(2a-b\right)^2-4\left(a-b\right)^2\)

\(=\left[\left(2a-b\right)-2\left(a-b\right)\right]\left[\left(2a-b\right)+2\left(a-b\right)\right]\)

\(=\left(2a-b-2a+2b\right)\left(2a-b+2a-2b\right)\)

\(=b\left(4a-3b\right)\)

c) \(125-\left(x+2\right)^3\)

\(=\left(5-x-2\right)\left[25+5\left(x+2\right)+\left(x+2\right)^2\right]\)

\(=\left(3-x\right)\left(25+5x+10+x^2+4x+4\right)\)

\(=\left(3-x\right)\left(x^2+9x+39\right)\)

d) \(\left(x+3\right)^3-8=\left(x+3-2\right)\left[\left(x+3\right)^2+2\left(x+3\right)+4\right]\)

\(=\left(x+1\right)\left(x^2+8x+19\right)\)

e) \(x^{12}-y^4=\left(x^6\right)^2-\left(y^2\right)^2=\left(x^6-y^2\right)\left(x^6+y^2\right)\)  9 khai triển tiếp hđt 6,7)

9 tháng 11 2017

Sửa đề: CMR: \(\frac{a^2}{2a+3b}+\frac{b^2}{2b+3c}+\frac{c^2}{2c+3a}\ge\frac{1}{5}\left(a+b+c\right)\)

Chứng minh BĐT phụ:

  \(\frac{x^2}{m}+\frac{y^2}{n}\ge\frac{\left(x+y\right)^2}{m+n}\)\(\forall m;n>0\)Tự chứng minh

Áp dụng bđt trên, ta có

\(\frac{a^2}{2a+3b}+\frac{b^2}{2b+3c}+\frac{c^2}{2c+3a}\ge\frac{\left(a+b+c\right)^2}{2a+3b+2b+3c+2c+3a}=\frac{1}{5}\left(a+b+c\right)\)

Vậy..........

AH
Akai Haruma
Giáo viên
31 tháng 5 2019

Lời giải:
Đặt \((3a+b-c,3b+c-a,3c+a-b)=(x,y,z)\)

\(\Rightarrow \left\{\begin{matrix} 3a+3b+3c=x+y+z\\ a+2b=\frac{x+y}{2}\\ b+2c=\frac{y+z}{2}\\ c+2a=\frac{x+z}{2}\end{matrix}\right.\)

Bài toán trở thành:

Với các số thực $x,y,z$ thỏa mãn \((x+y+z)^3=24+x^3+y^3+z^3\)

CMR: \((x+y)(y+z)(x+z)=8\)

------------------------------------------------

Áp dụng HĐT \(m^3+n^3=(m+n)^3-3mn(m+n)\) ta có:

\((x+y+z)^3=24+x^3+y^3+z^3\)

\(\Leftrightarrow (x+y+z)^3=24+(x+y)^3-3xy(x+y)+z^3\)

\(\Leftrightarrow (x+y+z)^3=24+(x+y+z)^3-3xy(x+y)-3z(x+y)(x+y+z)\)

\(\Leftrightarrow 3(x+y)[z(x+y+z)+xy]=24\)

\(\Leftrightarrow (x+y)[z(y+z)+x(z+y)]=8\)

\(\Leftrightarrow (x+y)(z+x)(z+y)=8\) (đpcm)

25 tháng 9 2017

Đặt \(\left\{{}\begin{matrix}3a+b-c=x\\3b+c-a=y\\3c+a-b=z\end{matrix}\right.\)

Khi đó điều kiện đb tương ứng

\(\left(x+y+z\right)^3=24+x^3+y^3+z^3\)

\(\Leftrightarrow3\left(x+y\right)\left(x+z\right)\left(x+z\right)=24\)

\(\Rightarrow3\left(2a+4b\right)\left(2b+4c\right)\left(2c+4a\right)=24\)

\(\Rightarrow\left(a+2b\right)\left(b+2c\right)\left(c+2a\right)=1\)

Do đó ta có \(đpcm\)

Chúc bạn học tốt!

20 tháng 11 2017

nhìn cách làm là biết của web khác.You ko nên zô phần câu hỏi tương tự,qua web khác đọc rồi lại viết ngay về web mk.Có lòng thì cho người ta cái link.Vì GP mà ko bik phân biệt nx r........