Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3.
ĐKXĐ: ...
\(\Leftrightarrow tan^22x+\left(\frac{1}{cos^22x}+1\right)=8\)
\(\Leftrightarrow tan^22x+tan^22x=8\)
\(\Leftrightarrow tan^22x=4\)
\(\Rightarrow\left[{}\begin{matrix}tan2x=2\\tan2x=-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=arctan\left(2\right)+k180^0\\2x=-arctan\left(2\right)+k180^0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{1}{2}arctan\left(2\right)+k90^0\\x=-\frac{1}{2}arctan\left(2\right)+k90^0\end{matrix}\right.\)
Nghiệm trên nhận các giá trị \(k=\left\{0;1;2;3\right\}\) ; nghiệm dưới nhận các giá trị \(k=\left\{1;2;3;4\right\}\)
1. ĐKXĐ: ...
\(\Leftrightarrow tan\left(x+\frac{\pi}{3}\right)=\frac{1}{tan\left(2x-\frac{\pi}{4}\right)}\)
\(\Leftrightarrow tan\left(x+\frac{\pi}{3}\right)=cot\left(2x-\frac{\pi}{4}\right)\)
\(\Leftrightarrow tan\left(x+\frac{\pi}{3}\right)=tan\left(\frac{3\pi}{4}-2x\right)\)
\(\Leftrightarrow x+\frac{\pi}{3}=\frac{3\pi}{4}-2x+k\pi\)
\(\Rightarrow x=\frac{5\pi}{36}+\frac{k\pi}{3}\)
2.
ĐKXĐ: ...
\(\Leftrightarrow tan\left(x+1\right)=\frac{1}{cot\left(2x+3\right)}\)
\(\Leftrightarrow tan\left(x+1\right)=tan\left(2x+3\right)\)
\(\Leftrightarrow2x+3=x+1+k\pi\)
\(\Rightarrow x=-2+k\pi\)
Bài 1:
ĐK : sinx cosx > 0
Khi đó phương trình trở thành
sinx+cosx=\(2\sqrt{\sin x\cos x}\)
ĐK sinx + cosx >0 → sinx>0 ; cosx>0
Khi đó \(2\sqrt{\sin x\cos x}\Leftrightarrow2\sin x=1\Leftrightarrow x=\frac{\pi}{4}+k\pi\)
Vậy ...
Bài 2:
ĐK : \(\sin\left(3x+\frac{\pi}{4}\right)\ge0\)
Khi đó phương trình đã cho tương đương với phương trình \(\sin2x=\frac{1}{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{\pi}{12}+k\pi\\x=\frac{5\pi}{12}+k\pi\end{matrix}\right.\)
Trong khoảng từ \(\left(-\pi,\pi\right)\) ta nhận được các giá trị :
\(x=\frac{\pi}{12}\) (TMĐK)
\(x=-\frac{11\pi}{12}\) (KTMĐK)
\(x=\frac{5\pi}{12}\) (KTMĐK)
\(x=-\frac{7\pi}{12}\) (TMĐK)
Vậy ta có 2 nghiệm thõa mãn \(x=\frac{\pi}{12}\) và \(x=-\frac{7\pi}{12}\)
Ta có : \(4sin^22x-1=0\Rightarrow\left[{}\begin{matrix}sin2x=\frac{1}{2}=sin.\frac{II}{6}\\sin2x=-\frac{1}{2}=sin\left(-\frac{II}{6}\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{II}{6}+k2II\\x=\frac{5II}{6}+k2II\\x=-\frac{II}{6}+k2II\\x=\frac{7II}{6}+k2II\end{matrix}\right.\)
Vì \(x\in\left(\frac{II}{2};-\frac{II}{2}\right)\Rightarrow x\in\left\{\frac{II}{6};-\frac{II}{6}\right\}\)
=> tổng các nghieemh bằng 0
Vậy A là đáp án đúng
c/ ĐKXĐ: \(cosx\ne0\)
\(\Leftrightarrow tan^3x+1+tan^2x+4\sqrt{3}\left(1+tanx\right)=8+7tanx\)
\(\Leftrightarrow tan^2x\left(1+tanx\right)+\left(4\sqrt{3}-7\right)\left(1+tanx\right)=0\)
\(\Leftrightarrow\left(tan^2x-7+4\sqrt{3}\right)\left(1+tanx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=-1\\tan^2x=7-4\sqrt{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=-1\\tanx=2-\sqrt{3}\\tanx=-2+\sqrt{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}tanx=tan\left(-\frac{\pi}{4}\right)\\tanx=tan\left(\frac{\pi}{12}\right)\\tanx=tan\left(-\frac{\pi}{12}\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{4}+k\pi\\x=\frac{\pi}{12}+k\pi\\x=-\frac{\pi}{12}+k\pi\end{matrix}\right.\)
Bạn tự tìm x thuộc khoảng đã cho
b/
ĐKXĐ: \(cos2x\ne0\)
\(\Leftrightarrow tan^22x+1+tan^22x=7\)
\(\Leftrightarrow tan^22x=3\)
\(\Rightarrow\left[{}\begin{matrix}tan2x=\sqrt{3}\\tan2x=-\sqrt{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}tan2x=tan60^0\\tan2x=tan\left(-60^0\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=60^0+k180^0\\2x=-60^0+k180^0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=30^0+k180^0\\x=-30^0+k180^0\end{matrix}\right.\)
Bạn tự tìm nghiệm thuộc khoảng đã cho nhé
e/
ĐKXĐ: ...
\(\Leftrightarrow\frac{1}{cos^2x}\left(9-13cosx\right)+4=0\)
\(\Leftrightarrow\frac{9}{cos^2x}-\frac{13}{cosx}+4=0\)
Đặt \(\frac{1}{cosx}=t\)
\(\Rightarrow9t^2-13t+4=0\)
\(\Rightarrow\left[{}\begin{matrix}t=1\\t=\frac{4}{9}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\frac{1}{cosx}=1\\\frac{1}{cosx}=\frac{4}{9}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}cosx=1\\cosx=\frac{9}{4}>1\left(l\right)\end{matrix}\right.\)
\(\Rightarrow x=k2\pi\)
d/
\(\Leftrightarrow cos^22x+\frac{1}{2}+\frac{1}{2}cos\left(2x-\frac{\pi}{2}\right)-1=0\)
\(\Leftrightarrow1-sin^22x+\frac{1}{2}sin2x-\frac{1}{2}=0\)
\(\Leftrightarrow-2sin^22x+sin2x+1=0\)
\(\Rightarrow\left[{}\begin{matrix}sin2x=1\\sin2x=-\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}+k2\pi\\2x=-\frac{\pi}{6}+k2\pi\\2x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=-\frac{\pi}{12}+k\pi\\x=\frac{7\pi}{12}+k\pi\end{matrix}\right.\)
Lời giải:
PT $\Leftrightarrow (\sin 2x-\cos 2x)(4\sin 2x+\cos 2x)=0$
$\Rightarrow \sin 2x=\cos 2x$ hoặc $4\sin 2x+\cos 2x=0$
Nếu $\sin 2x=\cos 2x$. Kết hợp với $\sin ^22x+\cos ^22x=1$ suy ra $\sin 2x=\cos 2x=\frac{\pm}{\sqrt{2}}$
$\Rightarrow x=\frac{\pi}{8}+\frac{k\pi}{2}$ với $k$ nguyên
Vì $x\in (0;\pi)$ nên $x=\frac{\pi}{8}$ hoặc $x=\frac{5\pi}{8}$
Nếu $4\sin 2x+\cos 2x=0$
$\Rightarrow \tan 2x=\frac{-1}{4}$
$\Rightarrow x=\frac{1}{2}k\pi +\frac{1}{2}\tan ^{-1}\frac{-1}{4}$
Vì $x\in (0;\pi)$ nên $x=\frac{1}{2}\pi +\frac{1}{2}\tan ^{-1}\frac{-1}{4};\pi +\frac{1}{2}\tan ^{-1}\frac{-1}{4}$
Vậy có $4$ nghiệm thỏa mãn.
Lời giải:
PT $\Leftrightarrow (\sin 2x-\cos 2x)(4\sin 2x+\cos 2x)=0$
$\Rightarrow \sin 2x=\cos 2x$ hoặc $4\sin 2x+\cos 2x=0$
Nếu $\sin 2x=\cos 2x$. Kết hợp với $\sin ^22x+\cos ^22x=1$ suy ra $\sin 2x=\cos 2x=\frac{\pm}{\sqrt{2}}$
$\Rightarrow x=\frac{\pi}{8}+\frac{k\pi}{2}$ với $k$ nguyên
Vì $x\in (0;\pi)$ nên $x=\frac{\pi}{8}$ hoặc $x=\frac{5\pi}{8}$
Nếu $4\sin 2x+\cos 2x=0$
$\Rightarrow \tan 2x=\frac{-1}{4}$
$\Rightarrow x=\frac{1}{2}k\pi +\frac{1}{2}\tan ^{-1}\frac{-1}{4}$
Vì $x\in (0;\pi)$ nên $x=\frac{1}{2}\pi +\frac{1}{2}\tan ^{-1}\frac{-1}{4};\pi +\frac{1}{2}\tan ^{-1}\frac{-1}{4}$
Vậy có $4$ nghiệm thỏa mãn.