K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2017

NV
20 tháng 6 2021

\(1\le1+\sqrt{1-x^2}\le2\Rightarrow3\le3^{1+\sqrt{1-x^2}}\le9\)

Đặt \(3^{1+\sqrt{1-x^2}}=t\Rightarrow t\in\left[3;9\right]\)

Phương trình trở thành: \(t^2-\left(m+2\right)t+2m+1=0\) 

\(\Leftrightarrow t^2-2t+1=m\left(t-2\right)\Leftrightarrow m=\dfrac{t^2-2t+1}{t-2}\)

Xét hàm \(f\left(t\right)=\dfrac{t^2-2t+1}{t-2}\) trên \(\left[3;9\right]\)

\(f'\left(t\right)=\dfrac{t^2-4t+3}{\left(t-2\right)^2}\ge0\) ; \(\forall t\in\left[3;9\right]\Rightarrow f\left(t\right)\) đồng biến trên khoảng đã cho

\(\Rightarrow f\left(3\right)\le f\left(t\right)\le f\left(9\right)\Rightarrow4\le m\le\dfrac{64}{7}\)

Có 6 giá trị nguyên của m 

20 tháng 6 2021

Cho e hỏi tại sao điều kiện lại nằm trong khoảng [1,2] vậy ạ ?

AH
Akai Haruma
Giáo viên
19 tháng 3 2018

Lời giải:

Đặt \(2^x=t(t>0)\Rightarrow t^2-2mt+2m=0\)

Theo định lý Viete, nếu pt có hai nghiệm $t_1,t_2$ thì: \(t_1t_2=2m\Leftrightarrow 2^{x_1}2^{x_2}=2m\)

\(\Leftrightarrow 2^{x_1+x_2}=2m\Leftrightarrow 2^{3}=2m\Leftrightarrow m=4\)

Thử lại thấy đúng

Đáp án B.

8 tháng 10 2017

4 tháng 12 2018

Đáp án D

Phương pháp:

Đặt 2x = t, t > 0. Chuyển về bài toán tìm m để phương trình bậc 2 ẩn t có 2 nghiệm t1, t2 thỏa mãn t1.t2 = 8

Cách giải:


Để phương trình (1) có 2 nghiệm x1, x2 thỏa mãn x1 + x2 = 3 thì phương trình (2) có 2 nghiệm t1,t2 thỏa mãn t1.t2 = 2x1.2x2 = 2x1 + x2 = 23 = 8

Khi đó:

AH
Akai Haruma
Giáo viên
16 tháng 10 2017

Bài 1:

Đặt \(\left(\frac{3}{2}\right)^x=a\) \((a>0)\)

PT tương đương với:

\(\left(\frac{9}{4}\right)^x-2.\left(\frac{3}{2}\right)^x+m^2=0\)

\(\Leftrightarrow a^2-2a+m^2=0\) (1)

-Trước tiên, để pt đầu tiên có hai nghiệm phân biệt thì (1) cũng phải có hai nghiệm phân biệt \(\rightarrow \) \(\Delta'=1-m^2>0\Leftrightarrow -1< m< 1\)

Áp dụng hệ thức Viete với \(a_1,a_2\) là nghiệm của (1) \(\left\{\begin{matrix} a_1+a_2=2\\ a_1a_2=m^2\end{matrix}\right.\)

-Vì \(a\) luôn dương nên \(\left\{\begin{matrix} a_1+a_2>0\\ a_1a_2>0\end{matrix}\right.\Leftrightarrow m^2>0 \Leftrightarrow m\neq 0\)

-Xét đk cuối cùng, để pt đầu tiên có hai nghiệm trái dấu, tức \(x<0\) hoặc $x>0$ thì \(a<1\) hoặc \(a>1\), hay \((a_1-1)(a_2-1)< 0\)

\(\Leftrightarrow a_1a_2-(a_1+a_2)+1< 0\Leftrightarrow m^2<1\Leftrightarrow -1< m< 1\)

Vậy \(-1< m< 1; m\neq 0\)

AH
Akai Haruma
Giáo viên
16 tháng 10 2017

Bài 2:

Đặt \(2^x=a\Rightarrow \) \(4^x-2m.2^x+2m=0\) tương đương với:
\(a^2-2ma+2m=0\) (1)

Để pt đầu tiên có hai nghiệm phân biệt thì (1) cũng phải có hai nghiệm phân biệt

\(\Rightarrow \Delta'=m^2-2m>0\Leftrightarrow m< 0\) hoặc $m>2$

Áp dugnj hệ thức viete với $a_1,a_2$ là hai nghiệm của phương trình:

\(a_1a_2=2m\Leftrightarrow 2^{x_1}.2^{x_2}=2m\Leftrightarrow 2^{x_1+x_2}=2m\Leftrightarrow 8=2m\rightarrow m=4\)

(thỏa mãn)

Vậy \(m=4\)

22 tháng 6 2019

Đáp án : B