K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2016

Ta có; \(Q=\frac{x^2+x-2}{x^2-x-2}=5\)

\(=>5.\left(x^2-x-2\right)=x^2+x-2\)

\(=>5x^2-5x-10=x^2+x-2\)

\(=>5x^2-5x-10-\left(x^2+x-2\right)=0\)

\(=>5x^2-5x-10-x^2-x+2=0\)

\(=>\left(5x^2-x^2\right)+\left(-5x-x\right)+\left(-10+2\right)=0\)

\(=>4x^2-6x-8=0\)

\(=>4x^2-6x=8\)

\(=>4x^2=8+6x\)

\(=>x^2=\frac{8+6x}{4}=\frac{8}{4}+\frac{6x}{4}=2+\frac{3}{2}.x\)

\(=>x^2-\frac{3}{2}x=2\)

tới đây tịt rồi,để suy nghĩ thêm đã

6 tháng 3 2016

Ta có :

\(K=\frac{2\sqrt{x}+3}{\sqrt{x}-5}=\frac{2\sqrt{x}-10}{\sqrt{x}-5}+\frac{13}{\sqrt{x}-5}=2+\frac{13}{\sqrt{x}-5}\)là số nguyên dương 

<=> 13 chia hết cho \(\sqrt{x}-5\)

<=> \(\sqrt{x}-5\inƯ\left(13\right)=\left\{-13;-1;1;13\right\}\)

<=> \(\sqrt{x}\in\left\{-12;4;6;18\right\}\)

<=> \(x\in\left\{16;36;324\right\}\) (vì \(\sqrt{x}\ge0\))

Do x nguyên và x có GTLN nên x = 324

15 tháng 3 2018

Chọn đáp án B.

8 tháng 2 2018

Đáp án D

20 tháng 7 2019

Đáp án A

18 tháng 6 2017

23 tháng 10 2015

ta có

\(\)\(y=\frac{1}{3}\log^3_{\frac{1}{2}}x+\log^2_{\frac{1}{2}}x-3\log_{\frac{1}{2}}x+1\)

Đặt =\(t=\log_{\frac{1}{2}}x\) ta có

\(y=\frac{1}{3}t^3+t^2-3t+1\) 

với \(\frac{1}{4}\le x\le4\Leftrightarrow\frac{1}{4}\le\left(\frac{1}{2}\right)^t\le4\Leftrightarrow-2\le t\le2\)

thay vì tính GTLN,GTNN của hàm số y trên [1/4;4] ta tính GTLN,GTNN của hàm số trên [-2;2]

ta tính \(y'=t^2+2t-3\) 

ta tính y'=0 suy ra t=1(loại);t=-3(loại)

ta tính y(2)=\(\frac{5}{3}\);y(-2)=\(\frac{-25}{3}\)

vậy GTNN của y=\(\frac{-25}{3}khi\log_{\frac{1}{2}}x=-2\Rightarrow x=4\) 

hàm số đạt GTLN y=\(\frac{5}{3}\) khi \(\log_{\frac{1}{2}}x=2\Leftrightarrow x=\left(\frac{1}{2}\right)^2=\frac{1}{4}\)

20 tháng 2 2018

Chọn A