Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=6^{2n+1}+5^{n+2}\)
Với n=0
=>\(A\left(0\right)=6^{2.0+1}+5^{0+2}=6+5^2=31\) chia hết cho 31
Giả sử n=k thì A sẽ chia hết cho 31
=>\(A\left(k\right)=6^{2k+1}+5^{k+2}\) chia hết cho 31
Chứng minh n=k+1 cũng chia hết cho 31 hay \(A\left(k+1\right)=6^{2\left(k+1\right)+1}+5^{\left(k+1\right)+2}\) chia hết cho 31
thật vậy
\(A\left(k+1\right)=6^{2k+3}+5^{k+3}=6^{2k+1}.36+5^{k+2}.5\)
\(=5\left(6^{2k+1}+5^{k+2}\right)+3.6^{2k+1}\)
Theo giả thiết ta có
\(6^{2k+1}+5^{k+2}\) chia hết cho 31
=>\(5\left(6^{2k+1}+5^{k+2}\right)\) chia hết cho 31
mà\(31.6^{2k+1}\) chia hết cho 31
=>\(5\left(6^{2k+1}+5^{k+2}\right)+31.6^{2k+1}\) chia hết cho 31
Hay \(A\left(k+1\right)\) chia hết cho 31
Vậy \(^{6^{2n+1}+5^{n+2}}\) chia hết cho 31
Kí hiệu đăng thức cần chứng minh là (*)
+) Với n = 1 thì 1 = \(\frac{1.\left(1+1\right)}{2}\) => (*) đúng
+) Giả sử (*) đúng với n = k , tức là: 1 + 2 + 3 + ....+ k = \(\frac{k\left(k+1\right)}{2}\)
Ta chứng minh (*) đúng với n = k+ 1, tức là: 1 + 2 + 3+ ...+ k + (k+1) = \(\frac{\left(k+1\right)\left(k+2\right)}{2}\)
Thật vậy, 1 + 2 + 3 + ....+ k + (k+1) = \(\frac{k\left(k+1\right)}{2}\) + (k+1) = \(\frac{k\left(k+1\right)+2\left(k+1\right)}{2}=\frac{\left(k+1\right)\left(k+2\right)}{2}\)
=> (*) đúng với n = k+ 1
Vậy.....
1 + 2 + 3 + ... + n = (n + 1) + (n - 1 + 2) + ... (n:2 cặp)
= (n + 1) + (n + 1) + (n + 1) + ... + (n + 1) (n:2 cặp)
= (n + 1).n : 2 (đpcm)
Lời giải:
$n^3+3n^2+5n=n(n^2+3n+5)$
Cho $n=1$ thì $n^3+3n^2+5n=9\vdots 3$
Cho $n=2$ thì $n^3+3n^2+5n=30\vdots 3$....
Giả sử điều trên đúng với $n=k$. Tức là $k^3+3k^2+5k\vdots 3$
Ta cần cm đúng với $n=k+1$, tức là $(k+1)^3+3(k+1)^2+5(k+1)\vdots 3$
Thật vậy:
$(k+1)^3+3(k+1)^2+5(k+1)=k^3+3k^2+3k+1+5k+5+3(k+1)^2$
$=(k^3+3k^2+5k)+3(k+2)+3(k+1)^2\vdots 3$ do $k^3+3k^2+5k\vdots 3; 3(k+2)\vdots 3; 3(k+1)^2\vdots 3$
Vậy ta có đpcm.
cái này đâu phải toán 6