K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 6 2021

\(I\left(\dfrac{1}{2};\dfrac{3}{4}\right)\)

Nhìn BBT ta thấy \(y_{max}=3\) còn \(y_{min}=\dfrac{3}{4}\)

12 tháng 6 2021

Thầy ơi, tại sao từ đỉnh y mà lại suy ra được Min và max vậy ạ,mong thầy trả lời

NV
19 tháng 4 2022

Tức là câu 2, 3 của bài hình không gian đúng không em?

19 tháng 4 2022

Đúng rồi ạ , Thầy giúp em với ạ !

12 tháng 9 2021

CCCCCCCCCCCCCCCCCCCCCCCCCCCC

NM
2 tháng 9 2021

ta có chu kỳ của hàm số bằng \(\frac{\pi}{3}\)

mà ta có :\(tan3x\text{ có chu kỳ là }\frac{2\pi}{3}\)\(cotmx\text{ có chu kỳ là }\frac{2\pi}{m}\)

vậy \(\frac{\pi}{3}\text{ là UCLN của }\left(\frac{2\pi}{3},\frac{2\pi}{m}\right)\Rightarrow m=6\)

thay lại thấy thỏa mãn, vậy m=6

2 tháng 9 2021

@Nguyễn Minh Quang Cảm ơn b đã trả lời, nhưng hình như chu kỳ của tan3x là pi/3 đúng không ạ?

NV
19 tháng 4 2022

Gọi H là trung điểm AB, có lẽ từ 2 câu trên ta đã phải chứng minh được \(SH\perp\left(ABCD\right)\)

Do \(\left\{{}\begin{matrix}DM\cap\left(SAC\right)=S\\MS=\dfrac{1}{2}DS\end{matrix}\right.\) \(\Rightarrow d\left(M;\left(SAC\right)\right)=\dfrac{1}{2}d\left(D;\left(SAC\right)\right)\)

Gọi E là giao điểm AC và DH

Talet: \(\dfrac{HE}{DE}=\dfrac{AH}{DC}=\dfrac{1}{2}\Rightarrow HE=\dfrac{1}{2}DE\)

\(\left\{{}\begin{matrix}DH\cap\left(SAC\right)=E\\HE=\dfrac{1}{2}DE\end{matrix}\right.\) \(\Rightarrow D\left(H;\left(SAC\right)\right)=\dfrac{1}{2}d\left(D;\left(SAC\right)\right)=d\left(M;\left(SAC\right)\right)\)

Từ H kẻ HF vuông góc AC (F thuộc AC), từ H kẻ \(HK\perp SF\)

\(\Rightarrow HK\perp\left(SAC\right)\Rightarrow HK=d\left(H;\left(SAC\right)\right)\)

ABCD là hình vuông \(\Rightarrow\widehat{HAF}=45^0\Rightarrow HF=AH.sin45^0=\dfrac{a\sqrt{2}}{4}\)

\(SH=\dfrac{a\sqrt{3}}{2}\), hệ thức lượng:

\(HK=\dfrac{SH.HF}{\sqrt{SH^2+HF^2}}=\dfrac{a\sqrt{21}}{14}\)

\(\Rightarrow d\left(M;\left(SAC\right)\right)=\dfrac{a\sqrt{21}}{14}\)

NV
19 tháng 4 2022

undefined

31 tháng 10 2016

giúp mình với !!!!

 

NM
2 tháng 9 2021

ta có \(x\in\left[-\frac{\pi}{4};0\right]\Rightarrow2x\in\left[-\frac{\pi}{2},0\right]\Rightarrow sin2x\in\left[-1,0\right]\)

Vậy \(\hept{\begin{cases}GTNN=-1\\GTLN=0\end{cases}}\)