Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Có:
\(S=\left(2018-1\right)\left(2018-2\right)...\left(2018-2018\right)+4^3\)
Ta nhân thấy rằng trong tích \(\left(2018-1\right)\left(2018-2\right)...\left(2018-2018\right)\) có một thừa số bằng 0, đó là thừa số \(2018-2018\)
Mà trong một tích, nếu có một thừa số bằng 0 thì tích đó bằng 0
\(\Leftrightarrow\left(2018-1\right)\left(2018-2\right)...\left(2018-2018\right)=0\)
\(\Leftrightarrow S=\left(2018-1\right)\left(2018-2\right)...\left(2018-2018\right)+4^3=0+4^3=4^3=64\)
Vậy \(S=64\)
Chúc bạn học tốt!
S= (2018-1)(2018-2) .... (2018-2017) . 0 +43
=> S= 0 + 43 (Trong 1 tích có 1 thừa số bằng 0 thì tích đó bằng 0);
=>S= 4.4.4=64;
Vậy S=64
2-->8: 4CS
10-->98: 45.2=90CS
100-->998: 450.3=1350CS
1000--> ?: ?.4=?CS
Số cuối cùng của dãy là:
{[(2016-4-90-1350):4]-1}.2+1000=1284
=>CS thứ 2016 của dãy là 4
\(\left(3n\right)^{100}\\ =3^{100}.n^{100}\\ =\left(3^4\right)^{25}.n^{100}\\ =81^{25}.n^{100}⋮81\)
Vậy \(\left(3n\right)^{100}⋮81\)
Chúc em học tốt!
Gọi \(3\) số tự nhiên liên tiếp là : \(a\)\(;\) \(a+1\)\(;\) \(a+2\) \(\left(a\in N\right)\)
Khi chia \(a\) cho \(3\) ta có các trường hợp :
\(TH1:\) \(a=3k\left(k\in N\right)\Rightarrow a⋮3\) \(\rightarrowđpcm\)
\(TH2:\) \(a=3k+1\left(k\in N\right)\Rightarrow a+2=3k+3⋮3\) \(\rightarrowđpcm\)
\(TH2:a=3k+2\left(k\in N\right)\Rightarrow a+1=3k+3⋮3\) \(\rightarrowđpcm\)
Vậy trong \(3\) số tự nhiên liên tiếp luôn có \(1\) số chia hết cho \(3\)
\(\rightarrowđpcm\)
~ Chúc bn học tốt ~
Gọi 3 số tự nhiên liên tiếp lần lượt là a, a+1, a+2 (a \(\in\) N )
Xét 3 trường hợp :
+ a = 3k ( k \(\in\) N )
=> a \(⋮\) 3
+ a = 3k + 1
=> a+2 = 3k + 1 + 2
= 3k + ( 1 + 2 )
= 3k + 3
= 3(k+1) chia hết cho 3
=> (a+2) \(⋮\) 3
+ a = 3k + 2
=> a+1 = 3k + 2 + 1
= 3k + ( 2 + 1 )
= 3k + 3
= 3(k+1) chia hết cho 3
=> (a+1) \(⋮\) 3
Vậy trong ba số tự nhiên liên tiếp luôn có 1 số chia hết cho 3
Câu 14)
\(a,\\ =-\dfrac{3}{8}+\dfrac{8}{17}+\dfrac{-5}{8}-\dfrac{3}{5}+\dfrac{9}{17}\\ =\left(\dfrac{-3}{8}+\dfrac{-5}{8}\right)+\left(\dfrac{8}{17}+\dfrac{9}{17}\right)-\dfrac{3}{5}\\ =\left(-1\right)+1-\dfrac{3}{5}=0-\dfrac{3}{5}=\dfrac{-3}{5}\\ b,\\ =\dfrac{7}{15}.\dfrac{-15}{14}+\left(\dfrac{27}{16}-\dfrac{1}{8}\right):\dfrac{5}{8}\)
\(=\dfrac{-1}{2}+\dfrac{25}{16}.\dfrac{8}{5}=\dfrac{-1}{2}+\dfrac{5}{2}=2\\ c,\\ =\dfrac{2}{2}-\dfrac{2}{3}+\dfrac{2}{3}-\dfrac{2}{4}+.....+\dfrac{2}{99}-\dfrac{2}{100}\\ =1-\dfrac{1}{50}=\dfrac{49}{50}\)
Câu 15
\(a,2x+\dfrac{-1}{4}=\dfrac{3}{2}\\ 2x=\dfrac{3}{2}-\dfrac{-1}{4}=\dfrac{7}{4}\\ x=\dfrac{7}{4}:2=\dfrac{7}{8}\\ b,\dfrac{15}{x}=\dfrac{-3}{4}\\ x=\dfrac{15.4}{-3}=-20\)
Nếu là z+x thì mik biết làm nè:
Đặt x-y=2011(1)
y-z=-2012(2)
z+x=2013(3)
Cộng (1);(2);(3) lại với nhau ta được :
2x=2012=>x=1006
Từ (1) => y=-1005
Từ (3) => z=1007
Lời giải:
Ta thấy:
$\frac{1}{2^2}< \frac{1}{1.2}$
$\frac{1}{3^2}< \frac{1}{2.3}$
$\frac{1}{4^2}< \frac{1}{3.4}$
$........$
$\frac{1}{20^2}< \frac{1}{19.20}$
Cộng lại:
$M< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{19.20}$
$M< \frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+....+\frac{20-19}{19.20}$
$M< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{19}-\frac{1}{20}$
$M< 1-\frac{1}{20}< 1$