Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1 ta có
\(\left(\frac{1}{a}+\frac{1}{b}\right)\left(2020a+2021b\right)\ge\left(\sqrt{2020}+\sqrt{2021}\right)^2\) ( BDT Bunhia )
do đó
\(a+b=ab.\left(\frac{1}{a}+\frac{1}{b}\right)\ge\left(\frac{1}{a}+\frac{1}{b}\right)\left(2020a+2021b\right)\ge\left(\sqrt{2020}+\sqrt{2021}\right)^2\)
vậy ta có đpcm.
bài 2.
ta có \(VT=\sqrt{x-3}+\sqrt{5-x}\le2\)( BDT Bunhia )
\(VP=y^2+2.\sqrt{2019}y+2021=\left(y+\sqrt{2019}\right)^2+2\ge2\)
suy ra PT có nghiệm \(\hept{\begin{cases}x-3=5-x\\y+\sqrt{2019}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\\y=-\sqrt{2019}\end{cases}}}\)
Áp dụng BĐT Bunyakovsky ta được:
\(\left(x+y\right)\left(\frac{2020}{x}+\frac{1}{2020y}\right)\ge\left(\sqrt{x}\cdot\sqrt{\frac{2020}{x}}+\sqrt{y}\cdot\sqrt{\frac{1}{2020y}}\right)\)
\(=\left(\sqrt{2020}+\sqrt{\frac{1}{2020}}\right)^2=2020+\frac{1}{2020}+2=2022\frac{1}{2020}\)
\(\Leftrightarrow\frac{2021}{2020}\cdot S\ge2022\frac{1}{2020}\)
\(\Rightarrow S\ge2022\frac{1}{2020}\div\frac{2021}{2020}=2021\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\frac{\sqrt{x}}{\sqrt{\frac{2020}{x}}}=\frac{\sqrt{y}}{\sqrt{\frac{1}{2020y}}}\\x+y=\frac{2021}{2020}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2020y\\x+y=\frac{2021}{2020}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=1\\y=\frac{1}{2020}\end{cases}}\)
Vậy Min(S) = 2021 khi \(\hept{\begin{cases}x=1\\y=\frac{1}{2020}\end{cases}}\)
Bài 3 :
Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Rightarrow\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\)
Ta có :
\(\frac{x}{x+1}=\frac{x}{x+x+y+z}=\frac{x}{\left(x+y\right)+\left(x+z\right)}\)
\(\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\)
Tương tự ta có:
\(\frac{y}{y+1}\le\frac{1}{4}\left(\frac{y}{x+y}+\frac{y}{y+z}\right)\)
\(\frac{z}{z+1}\le\frac{1}{4}\left(\frac{z}{x+z}+\frac{z}{y+z}\right)\)
\(\Rightarrow\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\)
\(+\frac{1}{4}\left(\frac{y}{x+y}+\frac{y}{y+z}\right)+\frac{1}{4}\left(\frac{z}{x+z}+\frac{z}{y+z}\right)\)
\(\Rightarrow\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{x}{x+z}+\frac{y}{x+y}+\frac{y}{y+z}+\frac{z}{x+z}+\frac{z}{y+z}\right)\)
\(\Rightarrow\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\le\frac{1}{4}.6=\frac{3}{2}\)
A B C N D F I K O
a) +) Ta có: IB, IK là 2 tiếp tuyến kẻ từ I
=> IO là tia phân giác \(\widehat{BIK}\)=->\(\widehat{BIO}=\frac{1}{2}\widehat{KIB}\)(1)
Tương tự: \(\widehat{IBO}=\frac{1}{2}\widehat{IBC}\)(2)
+) ND cùng vuông góc với IK và BC
=> IK//BC
=> \(\widehat{KIB}+\widehat{IBC}=180^o\)(3)
Từ (1), (2), (3)
=> \(\widehat{IBO}+\widehat{BIO}=90^o\)=> \(\widehat{IBO}=90^o\)
+) Xét 2 tam giác vuông INO và ODB có:
\(\widehat{ION}=\widehat{OBD}\)( cùng phụ với góc BOD)
=> \(\Delta INO~\Delta ODB\)
=> \(\frac{IN}{OD}=\frac{ON}{BD}\)=> \(IN.BD=R^2\)( với R là bán kính đường tròn (O)) (4)
Tương tự ta cũng chứng minh được: \(NK.DC=R^2\)(5)
(4), (5)=> \(IN.BD=NK.DC\Rightarrow\frac{IN}{NK}=\frac{DC}{BD}\)(6)
b) IK//BC. Theo định lí Thaslet ta có:
\(\frac{IN}{BE}=\frac{NK}{EC}\left(=\frac{AN}{AE}\right)\Rightarrow\frac{IN}{NK}=\frac{BE}{EC}\)(7)
(6),(7)=> \(\frac{DC}{DB}=\frac{BE}{EC}\Rightarrow\frac{BC-BD}{DB}=\frac{BC-EC}{CE}\Rightarrow\frac{BC}{BD}-1=\frac{BC}{CE}-1\Rightarrow\frac{BC}{BD}=\frac{BC}{CE}\Rightarrow BD=CE\)
Bài 1 t chỉ giải được khi x, y, z cùng dấu. Còn TH x, y, z không cùng dấu thì chưa nghĩ ra (Chắc là giả sử x, y đồng dấu rồi.. chăng?)
1/ Do \(x^2\left(x-1\right)^2\ge0\therefore\frac{x^2}{\left(x+1\right)^2}\ge\frac{3x^2}{4\left(x^2+x+1\right)}\)
Như vậy: \(VT\ge\frac{3}{4}\left(\frac{x^2}{x^2+x+1}+\frac{y^2}{y^2+y+1}+\frac{z^2}{z^2+z+1}\right)\ge\frac{3}{4}\)
\(\Leftrightarrow\frac{x^2}{x^2+x+1}+\frac{y^2}{y^2+y+1}+\frac{z^2}{z^2+z+1}\ge1\) (*) với xyz = 1.
Nếu \(x,y,z>0\) thì đặt \(\left(x;y;z\right)=\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\) thu được BĐT Vacs.
Nếu \(\left(x,y,z\right)< 0\) thì đặt \(\left(x,y,z\right)\rightarrow\left(-m,-n,-p\right)\left(\text{với }m,n,p>0\right)\)
Cần chứng minh: \(\frac{m^2}{m^2-m+1}+\frac{n^2}{n^2-n+1}+\frac{p^2}{p^2-p+1}\ge1\)
Vì \(m,n,p\ge0\rightarrow VT\ge\frac{m^2}{m^2+m+1}+\frac{n^2}{n^2+n+1}+\frac{p^2}{p^2+p+1}\ge1\)
Đây là BĐT (*). Chứng minh tương tự.
tth_new Làm khó m rồi tth :)) thực ra đề thực dương mà t viết thiếu :))))
Cách làm khác mà ko dùng tới bổ đề Vacs
\(\frac{x^2}{\left(1+x\right)^2}+\frac{y^2}{\left(1+y\right)^2}+\frac{z^2}{\left(1+z\right)^2}\)
\(=\frac{1}{\left(\frac{1}{x}+1\right)^2}+\frac{1}{\left(\frac{1}{y}+1\right)^2}+\frac{1}{\left(\frac{1}{z}+1\right)^2}\)
Đặt \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)\rightarrow\left(a;b;c\right)\)
Khi đó LHS trở thành:
\(\frac{1}{\left(a+1\right)^2}+\frac{1}{\left(b+1\right)^2}+\frac{1}{\left(c+1\right)^2}\)
Mặt khác theo Bunhiacopski ta có:
\(\frac{1}{\left(a+1\right)^2}+\frac{1}{\left(b+1\right)^2}\ge\frac{1}{\left(ab+1\right)\left(\frac{a}{b}+1\right)}+\frac{1}{\left(ab+1\right)\left(\frac{b}{a}+1\right)}=\frac{1}{ab+1}\)
Ta cần chứng minh \(\frac{1}{ab+1}+\frac{1}{\left(c+1\right)^2}=\frac{c}{c+1}+\frac{1}{\left(c+1\right)^2}\ge\frac{3}{4}\)
\(\Leftrightarrow\frac{c}{c+1}+\frac{1}{\left(c+1\right)^2}-\frac{3}{4}\ge0\)
\(\Leftrightarrow\frac{\left(c-1\right)^2}{4\left(c+1\right)^2}\ge0\) ( đúng )
Nhớ không nhầm đây là VMO 2005 được nghệ An lấy lại đưa vào đề thi tỉnh nhưng với bậc cao hơn :))))
A B C D E I K J H M O
gọi các điểm như trên hình
I là giao 2 đường tiếp tuyến HI và AC=>OI là phân giác góc EOK (1) và IE=IK
C là giao 2 tiếp tuyến AC và BC => OC là phân giác góc KOD (2) và KC=DC
(1) và (2) => tam giác IOC vuông tại O, có đường cao OK =>OK2=IK.KC <=> OK2=IE.DC
CM tương tự ta được OJ2 = EH.BD
mà \(\text{OK=OJ=r}\)
=>\(\text{IE.DC=EH.BD}\)
=>\(\frac{EH}{EI}=\frac{CD}{BD}\)
Ta có : \(\text{HI // BC}\)
=>\(\frac{EI}{MC}=\frac{AI}{AC}=\frac{AH}{AB}=\frac{EH}{BM}\)
=> \(\frac{BM}{MC}=\frac{EH}{EI}\)
=>\(\frac{BM}{CM}=\frac{EH}{EI}=\frac{CD}{BD}\)
=> \(1+\frac{BM}{CM}=1+\frac{CD}{BD}\)\(\Leftrightarrow\frac{BC}{CM}=\frac{BC}{BD}\Rightarrow CM=BD\)
83110=Hello