Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(A=\dfrac{x^2}{x+1}=\dfrac{x^2+2x+1-2x-1}{x+1}=\dfrac{\left(x+1\right)^2-2x-2+1}{x+1}\)
\(=\dfrac{\left(x+1\right)^2-2\left(x+1\right)+1}{x+1}=x+1-2+\dfrac{1}{x+1}=x-1+\dfrac{1}{x+1}\)
- Để A là số nguyên .
\(\Leftrightarrow x+1\inƯ_{\left(1\right)}\)
\(\Leftrightarrow x+1\in\left\{1;-1\right\}\)
\(\Leftrightarrow x\in\left\{0;-2\right\}\)
Vậy ...
a) th1: x =1/2 => A = 3.1/2 -8:1/2 -1 = -15,5
th2: x =-1/2 =>A= -3/2 +16 -1 = 11,5
b) 3x - 8/x -1 =1/2
6x2 - 3x -16 =0
x = 2
x= 4/3
a: \(A=\left(\dfrac{2+x}{2-x}-\dfrac{4x^2}{x^2-4}-\dfrac{2-x}{2+x}\right):\dfrac{2\left(x-3\right)}{2-x}\)
\(=\dfrac{4+4x+x^2+4x^2-\left(2-x\right)^2}{\left(2-x\right)\left(2+x\right)}\cdot\dfrac{2-x}{2\left(x-3\right)}\)
\(=\dfrac{5x^2+4x+4-4+4x-x^2}{\left(2+x\right)}\cdot\dfrac{1}{2\left(x-3\right)}\)
\(=\dfrac{4x^2+8x}{x+2}\cdot\dfrac{1}{2\left(x-3\right)}=\dfrac{4x\left(x+2\right)}{2\left(x+2\right)}\cdot\dfrac{1}{x-3}=\dfrac{2x}{x-3}\)
b: |x-2|=2
=>x-2=2 hoặc x-2=-2
=>x=0(nhận) hoặc x=4(nhận)
Khi x=0 thì \(A=\dfrac{2\cdot0}{0-3}=\dfrac{-2}{3}\)
Khi x=4 thì \(A=\dfrac{2\cdot4}{4-3}=8\)
c: A>0
=>x/x-3>0
=>x>3 hoặc x<0
=>x>3
a: \(A=\dfrac{x+x-2-2x-4}{\left(x-2\right)\left(x+2\right)}\cdot\left(\dfrac{x+2-2x}{1-x}\right)\)
\(=\dfrac{-6}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{\left(x-2\right)}{x-1}\)
\(=\dfrac{-6}{\left(x+2\right)\left(x-1\right)}\)
b: Thay x=-4 vào A, ta được:
\(A=-\dfrac{6}{\left(-4+2\right)\left(-4-1\right)}=\dfrac{-6}{-2\cdot\left(-5\right)}=\dfrac{-6}{10}=\dfrac{-3}{5}\)