Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Cho \(a\in R;n\in Z^+\) thì \(a^n=a\cdot a\cdot...\cdot a\)(n chữ số a)
b: \(a^0=1\)
Bạn chú ý gõ đề bằng công thức toán (hộp biểu tượng $\sum$) trên thanh công cụ. Nhìn đề rối mắt thế này thật tình không ai muốn đọc chứ đừng nói đến giúp =)))
a: \(\left(\sqrt[n]{a}\right)^n=a\)
mà \(\left(\sqrt[n]{a}\right)=a^{\dfrac{1}{n}}\)
nên \(\left(a^{\dfrac{1}{n}}\right)^n=a\)
b: \(a^{\dfrac{m}{n}}=a^{m\cdot\dfrac{1}{n}}=a^m\cdot a^{\dfrac{1}{n}}=\left(a^{\dfrac{1}{n}}\right)^m\)
b) Ta có:
\(y^2=\left(sinx\sqrt{cosx}+cosx\sqrt{sinx}\right)^2\le\left(sin^2x+cos^2x\right).\left(sinx+cosx\right)\)
(Áp dụng BĐT Bunhiacopxki)
\(\Leftrightarrow y^2\le sinx+cosx\Leftrightarrow y^2\le\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)\le\sqrt{2}\) (Do \(sin\alpha\le1\)
\(\Rightarrow y\le\sqrt[4]{2}\)
Vậy max y = \(\sqrt[4]{2}\) \(\Leftrightarrow\dfrac{\sqrt{cosx}}{sinx}=\dfrac{\sqrt{sinx}}{cosx}\Leftrightarrow x=\dfrac{\pi}{4}+k2\pi\) (k\(\in\)Z)
Hàm số không có giá trị nhỏ nhất.
Khi các hệ số tùy ý; ta cần thực hiện các bước sau:
Chọn hệ số a: có 4 cách chọn hệ số a vì a≠0.
Chọn hệ số b: có 5 cách chọn hệ số b.
Chọn hệ số c: có 5 cách chọn hệ số c
Chọn hệ số d: có 5 cách chọn hệ số d.
Theo quy tắc nhân có: 4.5.5.5=500 đa thức.
Chọn C.
a: \(\sqrt{a^2}=\left|a\right|\)
\(\sqrt[3]{a^3}=a\)
b: \(\sqrt{a\cdot b}=\sqrt{a}\cdot\sqrt{b}\)
a: căn bậc hai của một số a không âm là một số x thỏa mãn \(x^2=a\)
b: Căn bậc hai của một số a bất kỳ là một số x sao cho x thỏa mãn \(x^3=a\)