\(\sqrt{Tí}\)< \(\sqrt{Tèo}\)(Tr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2021

\(\sqrt{3-\sqrt{5+\sqrt{2}}}.\sqrt{3+\sqrt{5+\sqrt{2}}}\)

\(=\sqrt{9-\left(5+\sqrt{2}\right)}=\sqrt{9-5-\sqrt{2}}=\sqrt{4-\sqrt{2}}\)

6 tháng 7 2018

a)  \(1+\sqrt{3}+\sqrt{5}+\sqrt{15}\)

\(=\left(1+\sqrt{3}\right)+\sqrt{5}\left(1+\sqrt{3}\right)\)

\(=\left(1+\sqrt{3}\right)\left(1+\sqrt{5}\right)\)

b)  \(\sqrt{10}+\sqrt{14}+\sqrt{15}+\sqrt{21}\)

\(=\sqrt{5}\left(\sqrt{2}+\sqrt{3}\right)+\sqrt{7}\left(\sqrt{2}+\sqrt{3}\right)\)

\(=\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{5}+\sqrt{7}\right)\)

c)  \(\sqrt{35}-\sqrt{15}+\sqrt{14}-\sqrt{6}\)

\(=\sqrt{5}\left(\sqrt{7}-\sqrt{3}\right)+\sqrt{2}\left(\sqrt{7}-\sqrt{3}\right)\)

\(=\left(\sqrt{7}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{2}\right)\)

6 tháng 7 2018

e)  \(xy+y\sqrt{x}+\sqrt{x}+1\)

\(=y\sqrt{x}\left(\sqrt{x}+1\right)+\left(\sqrt{x}+1\right)\)

\(=\left(\sqrt{x}+1\right)\left(y\sqrt{x}+1\right)\)

g)  \(3+\sqrt{x}+9-x\)

\(=\left(3+\sqrt{x}\right)+\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)\)

\(=\left(3+\sqrt{x}\right)\left(4-\sqrt{x}\right)\)

15 tháng 8 2016

Bài 1:
a) Để A,B có nghĩa \(\Leftrightarrow\begin{cases}2x+3\ge0\\x-3>0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge-\frac{3}{2}\\x>3\end{cases}\)\(\Leftrightarrow x>3\)

b) Để A= B

\(\Leftrightarrow\sqrt{\frac{2x+3}{x-3}}=\frac{\sqrt{2x+3}}{\sqrt{x-3}}\)

\(\Leftrightarrow\sqrt{\frac{2x+3}{x-3}}-\sqrt{\frac{2x+3}{x-3}}=0\)

\(\Leftrightarrow0x=0\) (thỏa mãn với mọi x>3)

Vậy x>3 thì A=B

 

 

 

15 tháng 8 2016

a, ĐKXĐ A: \(\frac{2x+3}{x-3}\)\(\frac{2x+3}{x-3}\ge0\Rightarrow\left[\begin{array}{nghiempt}\hept{\begin{cases}2x+3\ge0\\x-3>0\end{array}\right.\\\hept{\begin{cases}2x-3\le0\\x-3< 0\end{array}\right.\end{cases}\Rightarrow\left[\begin{array}{nghiempt}\hept{\begin{cases}x\ge-\frac{3}{2}\\x>3\end{array}\right.\\\hept{\begin{cases}x\le-\frac{3}{2}\\x< 3\end{array}\right.\end{cases}\Rightarrow}\left[\begin{array}{nghiempt}x>-\frac{3}{2}\\x< 3\end{array}\right.}\)

ĐKXĐ B: \(\begin{cases}2x+3\ge0\\x-3>0\end{cases}\Rightarrow\begin{cases}x\ge-\frac{3}{3}\\x>3\end{cases}}\)

30 tháng 6 2017

2.  ĐK:  \(x\ge-5\)

\(\Leftrightarrow\left(x+5-6\sqrt{x+5}+9\right)+\left(x^2-8x+16\right)=0\)

\(\Leftrightarrow\left(\sqrt{x+5}-3\right)^2+\left(x-4\right)^2=0\)

\(\forall x\ge-5\)  ta luôn có  \(\left(\sqrt{x+5}-3\right)^2+\left(x-4\right)^2\ge0\)

Đẳng thức xảy ra  \(\Leftrightarrow\)  \(\hept{\begin{cases}\sqrt{x+5}-3=0\\x-4=0\end{cases}}\)  \(\Leftrightarrow\)  x = 4 (nhận)

30 tháng 6 2017

Muốn câu nào ? ^^ Mình giải cho ........><

a: \(=4x-4x\sqrt{2}-2x\sqrt{2}+2x=6x-6x\sqrt{2}\)

b: \(=6x-4\sqrt{xy}+3\sqrt{xy}-2y=6x-\sqrt{xy}-2y\)

14 tháng 7 2016

a/ \(P=\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}+1}{\sqrt{x}-3}-\frac{3-11\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

     \(=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)-\left(3-11\sqrt{x}\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

       \(=\frac{2x-6\sqrt{x}+x+4\sqrt{x}+3-3+11\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

         \(=\frac{3x+9\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{3\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{3\sqrt{x}}{\sqrt{x}-3}\)

b/ \(P< 1\Rightarrow\frac{3\sqrt{x}}{\sqrt{x}-3}< 1\Rightarrow\frac{2\sqrt{x}+3}{\sqrt{x}-3}< 0\)

   Xét 2 trường hợp:

  • \(\hept{\begin{cases}2\sqrt{x}+3>0\\\sqrt{x}-3< 0\end{cases}\Rightarrow\hept{\begin{cases}2\sqrt{x}>-3\\\sqrt{x}< 3\end{cases}\Rightarrow}\hept{\begin{cases}\sqrt{x}>-\frac{3}{2}\\\sqrt{x}< 3\end{cases}}\Rightarrow-\frac{3}{2}< \sqrt{x}< 3}\)

                                       \(\Rightarrow-\frac{9}{4}< x< 9\)

  •  \(\hept{\begin{cases}2\sqrt{x}+3< 0\\\sqrt{x}>3\end{cases}\Rightarrow\hept{\begin{cases}\sqrt{x}< -\frac{3}{2}\\\sqrt{x}>3\end{cases}}}\) (vô lí)

                                                   Vậy -9/4 < x < 9