Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có: \(\hept{\begin{cases}2x^2-xy-y^2=P\\x^2+2xy+3y^2=4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}8x^2-4xy-4y^2=4P\\Px^2+2xy+3Py^2=4P\end{cases}}\)
\(\Leftrightarrow8x^2-4xy-4y^2-Px^2-2Pxy-3Py^2=0\)
\(\Leftrightarrow\left(8-P\right)x^2-xy\left(4+2P\right)-y^2\left(4+3P\right)=0\)
* Với \(y=0\)
\(\Rightarrow\left(8-P\right)x^2=0\Rightarrow\orbr{\begin{cases}8-P=0\\x=0\end{cases}}\Rightarrow\orbr{\begin{cases}P=8\\P=0\end{cases}}\)
* Với \(y\ne0\), đặt \(t=\frac{x}{y}\)
\(pt\Leftrightarrow\left(8-P\right)t^2-\left(4+2P\right)t-\left(4+3P\right)=0\)
- Nếu \(P=8\Rightarrow t=-\frac{7}{5}\)
- Nếu \(P\ne8\Rightarrow\)pt có nghiệm \(\Leftrightarrow\Delta\ge0\Rightarrow\left(4+2P\right)^2-4\left(8-P\right)\left(4+3P\right)\ge0\)
\(\Leftrightarrow16+8P+4P^2-4\left(32-3P^2+20P\right)\ge0\)
\(\Leftrightarrow-8P^2+96P+144\ge0\)
\(\Leftrightarrow6-3\sqrt{6}\le P\le6+3\sqrt{6}\)
Vậy \(MinP=6-3\sqrt{6};MaxP=6+3\sqrt{6}\)
⇒ 8 − P x
2 = 0⇒ 8 − P = 0
x = 0 ⇒ P = 8
P = 0
* Với y ≠ 0, đặt t =
y
x
pt⇔ 8 − P t
2 − 4 + 2P t − 4 + 3P = 0
- Nếu P = 8⇒t = −
5
7
- Nếu P ≠ 8⇒pt có nghiệm ⇔Δ ≥ 0⇒ 4 + 2P
2 − 4 8 − P 4 + 3P ≥ 0
⇔16 + 8P + 4P
2 − 4 32 − 3P
2
+ 20P ≥ 0
⇔− 8P
2
+ 96P + 144 ≥ 0
⇔6 − 3 6 ≤ P ≤ 6 + 3 6
Vậy MinP = 6 − 3 6 ;MaxP = 6 + 3 6
Ta có: \(\frac{P}{4}=\frac{2x^2-xy-y^2}{x^2+2xy+3y^2}\)
Xét x=0 =>...
Xét x#0 chia cả tử và mẫu cho x2 rồi đặt \(t=\frac{y}{x}\)
Delta=....
@AZM: Thật không may dấu "=" không xảy ra bạn nhé :))
Ta có:\(S=\frac{x}{y}+\frac{y}{x}+\frac{xy}{x^2+y^2}=\frac{x^2+y^2}{xy}+\frac{xy}{x^2+y^2}\)
Đặt \(a=\frac{x^2+y^2}{xy}\ge\frac{2\sqrt{x^2y^2}}{xy}=2\)
Khi đó:\(S=a+\frac{1}{a}=\left(\frac{a}{4}+\frac{1}{a}\right)+\frac{3a}{4}\ge2\sqrt{\frac{a}{4}\cdot\frac{1}{a}}+\frac{3\cdot2}{4}=\frac{5}{2}\)
Đẳng thức xảy ra tại x=y
Bài làm:
Ta có: \(\frac{x}{y}+\frac{y}{x}+\frac{xy}{x^2+y^2}=\frac{x^2+y^2}{xy}+\frac{xy}{x^2+y^2}\ge2\sqrt{\frac{\left(x^2+y^2\right)}{xy}.\frac{xy}{\left(x^2+y^2\right)}}=2.1=2\)
Dấu "=" xảy ra khi: \(x=y\)
Vậy GTNN biểu thức là 2 khi \(x=y\)
Học tốt!!!!
1. \(1=x^2+y^2\ge2xy\Rightarrow xy\le\frac{1}{2}\)
\(A=-2+\frac{2}{1+xy}\ge-2+\frac{2}{1+\frac{1}{2}}=-\frac{2}{3}\)
max A = -2/3 khi x=y=\(\frac{\sqrt{2}}{2}\)
\(\frac{1}{xy}+\frac{1}{xz}=\frac{1}{x}\left(\frac{1}{y}+\frac{1}{z}\right)\ge\frac{1}{x}.\frac{4}{y+z}=\frac{4}{\left(4-t\right)t}=\frac{4}{4-\left(t-2\right)^2}\ge1\) với t = y+z => x =4 -t