Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHE co
AB vừa là đườg cao, vừa là trung tuyến
nên ΔAHE cân tại A
=>AH=AE
Xét ΔAHF có
AC vừa là đường cao, vừa là trung tuyến
nên ΔAHF cân tại A
=>AH=AF
=>AE=AF
b: Xét ΔAEM và ΔAHM có
AE=AH
góc EAM=góc HAM
AM chung
=>ΔAEM=ΔAHM
=>góc AEM=góc AHM
Xét ΔAHN và ΔAFN có
AH=AF
góc HAN=góc FAN
AN chung
=>ΔAHN=ΔAFN
=>góc AHN=góc AFN
=>góc AHN=góc AHM
=>HA là phân giác của góc MHN
a) Xét ∆AHD có :
AB là trung trực DH
=> ∆AHD cân tại A
=> AD = AH(1)
Xét ∆AHE có :
AI là trung trực HE
=> ∆AHE cân tại A
=> AH = AE (2)
Từ (1) và (2) => AD = AE
=> ∆ADE cân tại A
https://olm.vn/hoi-dap/tim-kiem?q=cho+tam+gi%C3%A1c+ABC+(+g%C3%B3c+BAC=+90+%C4%91%E1%BB%99+)+,+AH+vu%C3%B4ng+g%C3%B3c+v%E1%BB%9Bi+BC.g%E1%BB%8Di+E+v%C3%A0+F+l%E1%BA%A7n+l%C6%B0%E1%BB%A3t+l%C3%A0+c%C3%A1c+%C4%91i%E1%BB%83m+%C4%91%E1%BB%91i+x%E1%BB%A9ng+c%E1%BB%A7a+H+qua+AB;AC+.+%C4%91%C6%B0%E1%BB%9Dng+th%E1%BA%B3ng+EF+c%E1%BA%AFt+B;C+l%E1%BA%A7n+l%C6%B0%E1%BB%A3t+t%E1%BA%A1i+M+v%C3%A0+N+.CMR+:+a)+AE=AFB)+HA+l%C3%A0+ph%C3%A2n+gi%C3%A1c+c%E1%BB%A7a+g%C3%B3c+MHNc)+Chung+minh+:+CM+song+song+v%E1%BB%9Bi+EH&id=455200
Bạn tham khảo đường link trên nha, kéo xuống bên dưới đó, mình giải đc rồi nhưng dài quá ko gõ đc :))
À ở câu a) thì cách làm ở link trên đúng và ngắn hơn cách mình làm, còn đây là câu a) của mình nè:
a) Gọi EH cắt AB tại X, FH cắt AC tại Y
Vì E đối xứng với H qua AB nên EH vuông góc AB; EX=XH
Xét tam giác AEX và AHX có:
AX: cạnh chung
EX=XH (cmt)
Góc EXA = góc AXH (=90°)
Suy ra: tam giác AEX = tam giác AHX (c-g-c)
Do đó: AE=AH (2 cạnh tương ứng) (1)
Vì F đối xứng với H qua AC nên FH vuông góc AC; HY=YF
Xét tam giác AHY và AFY có:
HY=YF (cmt)
AY: cạnh chung
Góc AYH = góc AYF (=90°)
Suy ra: tam giác AHY = tam giác AFY (c-g-c)
Do đó: AH=AF (2 cạnh tương ứng) (2)
Từ (1) và (2) suy ra: AE=AF(=AH) (đpcm)
*Bạn tự viết kí hiệu góc, tam giác,...v.v... dùm mình nha, mình ko biết viết*
a, xét tam giác AIE và tam giác AIH có : AI chung
IE = IH (Gt)
^AIE = ^AIH = 90
=> tam giác AIE = tam giác AIH (2cgv)
=> AE = AH (đn) (1)
xét tam giác AHK và tam giác AFK có : AK chung
HK = KF (gt)
^AKH = ^AKF = 90
=> tam giác AHK = tam giác AFK (2cgv)
=> AH = AF (đn) và (1)
=> AE = AF
=> tam giác AEF cân tại A (đn)
b, xét tam giác ABE và tam giác ABH có : AB chung
AE = AH (câu a)
^EAB = ^HAB do tam giác AIE = tam giác AIH (câu a)
=> tam giác ABE = tam giác ABH (c-g-c)
=> ^AEB = ^AHB (đn) mà ^AHB = 90
=> ^AEB = 90
=> AE _|_ BE (đn)
c, xét tam giác KFC và tam giác KHC có : KC chung
HK = KF (gt)
^HKC = ^FKC = 90
=> tam giác KFC = tam giác HKC (2cgv)
=> CF = CH (đn)
d, xét tam giác AEM và tam giác AHM có : AM chung
AE = AH (câu a)
^EAM = ^HAM (câu b)
=> tam giác AEM = tam giác AHM (c-g-c)
=> ^AEM = ^AHM (đn) (2)
xét tam giác AHN và tam giác AFN có : AN chung
AH = HF (Câu a)
^HAN = ^FAN do tam giác HAK = tam giác FAK (Câu a)
=> tam giác AHN = tam giác AFN (c-g-c)
=> ^AHN = ^AFN (đn) (3)
tam giác AEF cân tại A (câu a) => ^AEM = ^AFN (tc) và (2)(3)
=> ^MHA = ^NHA mà HA nằm giữa HM và HN
=> HA là pg của ^MHN (đn)