Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^2+7x+12=0
x^2+3x+4x+12=0
x(x+3)+4(x+3)=0
(x+3)(x+4)=0
suy ra x+3=0 hoac x+4=0
x=-3 , x=-4
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
Nhận xét:
+) Với x \(\geq\) 0 thì | x | + x = 2x
+) Với x < 0 thì | x | + x = 0
Do đó : | x | + x luôn là số chẵn với mọi x \(\in \) Z
Áp dụng nhận xét trên thì :
| n - 2016 | + n - 2016 là số chẵn với n - 2016 \(\in \) Z
\(\implies\) 2m + 2015 là số chẵn
\(\implies\) 2m là số lẻ
\(\implies\) m = 0
Khi đó:
| n - 2016 | + n - 2016 = 2016
+) Nếu n < 2016 ta được:
- ( n - 2016 ) + n - 2016 =2016
\(\implies\) 0 = 2016
\(\implies\) vô lí
\(\implies\) loại
+) Nếu n \(\geq\) 2016 ta được :
( n - 2016 ) + n - 2016 = 2016
\(\implies\) n - 2016 + n - 2016 = 2016
\(\implies\) 2n - 2 . 2016 = 2016
\(\implies\) 2 ( n - 2016 ) = 2016
\(\implies\) n - 2016 = 2016 : 2
\(\implies\) n - 2016 = 1008
\(\implies\) n = 1008 + 2016
\(\implies\) n = 3024
\(\implies\) thỏa mãn
Vậy ( m ; n ) \(\in \) { ( 0 ; 3024 ) }
A B C D M
a) Xét △DAB và △DAC có :
AD chung
AB = AC
\(\Rightarrow\)△DAB = △DAC (cạnh huyền-cạnh góc vuông)
b) Có △DAB = △DAC
\(\Rightarrow\)DB = DC (Cặp cạnh tương ứng)
\(\Rightarrow\)△DBC cân tại D (ĐPCM)
c) Có △DAB = △DAC :
\(\Rightarrow\widehat{BAD}=\widehat{CAD}\)
\(\Rightarrow\)AD là tia phân giác của góc A
\(\Rightarrow\)D nằm trên tia phân giác của góc A (1)
Có : △ABC cân có AM là đường trung tuyến
\(\Rightarrow\)AM đồng thời là tia phân giác của góc A
\(\Rightarrow\)M nằm trên tia phân giác của góc A (2)
Từ (1) và (2) suy ra : A,M,D thẳng hàng (ĐPCM)
A B C K M N
(Mình vẽ hình xấu hoắc à! Mà nhớ bài này giải rồi)
a) Ta có \(\Delta ABC\)cân tại \(A\Rightarrow AK\)vừa là đường cao vừa là trung tuyến (vừa là phân giác (*))
\(\Rightarrow KB=KC\)
b) Xét \(\Delta AMK\)và \(\Delta ANK\)có:
\(AK\): chung
\(\widehat{AMK}=\widehat{ANK}=90\)độ (gt)
\(\widehat{MAK}=\widehat{NAK}\)(Từ (*) ở câu a)
\(\Rightarrow\Delta AMK=\Delta ANK\left(g.c.g\right)\)
\(\Rightarrow KM=KN\)(hai cạnh tương ứng)
c) Từ cm câu b \(\Rightarrow AM=AN\)(hai cạnh tương ứng)
Ta có: \(\hept{\begin{cases}AM=AN\left(cmt\right)\\KM=KN\left(cmt\right)\end{cases}}\)
\(\Rightarrow AK\)là đường trung trực của \(MN\Rightarrow AK⊥MN\)
Ta lại có: \(\hept{\begin{cases}MN⊥AK\left(cmt\right)\\BC⊥AK\left(gt\right)\end{cases}}\)
\(\Rightarrow MN\)// \(BC\)
Vì \(\left|x-\frac{2}{3}\right|\ge0\forall x\Rightarrow\left|x-\frac{2}{3}\right|-\frac{1}{3}\ge\frac{-1}{3}\)
Như vậy ta chỉ tìm được giá trị nhỏ nhất của A và A nhận giá trị \(\frac{-1}{3}\)thì nhỏ nhất
<=>\(\left|x-\frac{2}{3}\right|=0\)\(\Leftrightarrow x-\frac{2}{3}=0\Leftrightarrow x=\frac{2}{3}\)
Vì | 2x - 1 | ≥ 0 nên B = \(\frac{2022}{2021}-\left|2x-1\right|\ge\frac{2022}{2021}-0\)
Như vậy ta chỉ tìm được gia trị lớn nhất của B và B nhận gí trị \(\frac{2022}{2021}\)thì lớn nhất
<=> | 2x - 1 | = 0 <=> 2x - 1 = 0 <=> 2x = 1 <=> \(x=\frac{1}{2}\)