K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAC có BA=BC

nên ΔBAC cân tại B

Suy ra: \(\widehat{BAC}=\widehat{BCA}\)

mà \(\widehat{BAC}=\widehat{ACD}\)

nên \(\widehat{ACD}=\widehat{ACB}\)

hay CA là tia phân giác của góc BCD

b: Xét ΔDBA có 

M là trung điểm của AD

F là trung điểm của BD

Do đó: MF là đường trung bình

=>MF//AB

hay MF//CD(1)

Xét ΔADC có

M là trung điểm của AD

E là trung điểm của AC

Do đó: ME là đường trung bình

=>ME//DC(2)

Xét hình thang ABCD có 

M là trung điểm của AD

N là trung điểm của BC

Do đó: MN là đường trung bình

=>MN//CD//AB(3)

Từ (1), (2) và (3) suy ra M,F,E,N thẳng hàng

12 tháng 7 2019

Có : ED = EB = BD/2 ; AF = CF = AC/2 .

⇒⇒ BDACBDAC = BD2CD2BD2CD2 = DECFDECF (1).

Gọi O là điểm giao của BD và AC .

Xét ΔΔ ABO có BD // AC , theo hệ quả của định lí Ta-lét

⇒⇒ DOBO=COAODOBO=COAO

⇒⇒ DODO+BO=COCO+AODODO+BO=COCO+AO ⇔⇔ DOBD=COACDOBD=COAC

⇒⇒ BDAC=DOCOBDAC=DOCO (2) .

Từ (1) và (2) ta đc : DECF=DOCODECF=DOCO

⇒⇒DOCO=DECF=DO−DECO−CF=OEOFDOCO=DECF=DO−DECO−CF=OEOF.

⇒⇒ OEOD=OFOCOEOD=OFOC

Xét ΔΔ OCD có :OEOD=OFOCOEOD=OFOC (c/m trên)

⇒⇒ EF // CD (định lí Ta-lét đảo) .

Mà KH ⊥⊥ EF ⇒⇒ KH ⊥⊥ CD .

Xét ΔΔ HCD có :

KH ⊥⊥ CD ; HC = HD

⇒⇒ ΔΔ HCD cân tại H (KH vừa là trung tuyến , vừa là đường cao của ΔΔ HCD ) .

cho k

 1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc...
Đọc tiếp

 

1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.

2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.

3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc BAC = 2.BMN

4. Cho tứ giác ABCD, gọi A', B', C', D' lần lượt là trọng tâm của các tam giác BCD, ACD, ABD, ABC. Chứng minh rằng các đường thẳng AA', BB', CC', DD' đồng quy.

5. Cho tam giác ABC, G là trọng tâm. Đường thẳng d không cắt các cạnh của tam giác ABC. Gọi A', B', C', G' lần lượt là hình chiếu của A, B, C, G trên đường thẳng d. Chứng minh GG'=AA'+BB'+CC'/3

0