Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình tự vẽ nhé :v
Kẻ AH vuông góc với BC, BK vuông góc với CD, đường chéo AC vuông góc với AD.
Đặt AH = AB = x => AH = x
Tam giác AHD = tam giác BKC (c . h - g . n)
\(\Rightarrow DH=CK=\frac{\left(10-x\right)}{2}\)
\(\Rightarrow CH=HK+CK=x+\frac{\left(10+x\right)}{2}=\frac{\left(x-10\right)}{2}\)
Chết :v Làm tiếp nà ><
Áp dụng hệ thức lượng trong tam giác ADC vuông tại A, ta có:
\(AH^2=DH.HC\Rightarrow x^2=\frac{\left(10-x\right)}{2}.\frac{\left(x-10\right)}{2}\)
\(\Rightarrow x=5x^2=20\)
\(\Rightarrow x=2\sqrt{5}\)
Câu 11.12.
Kẻ đường cao \(AH,BK\).
Do tam giác \(\Delta AHD=\Delta BKC\left(ch-gn\right)\)nên \(DH=BK\).
Đặt \(AB=AH=x\left(cm\right),x>0\).
Suy ra \(DH=\frac{10-x}{2}\left(cm\right)\)
Xét tam giác \(AHD\)vuông tại \(H\):
\(AD^2=AH^2+HD^2=x^2+\left(\frac{10-x}{2}\right)^2\)(định lí Pythagore)
Xét tam giác \(DAC\)vuông tại \(A\)đường cao \(AH\):
\(AD^2=DH.DC=10.\left(\frac{10-x}{2}\right)\)
Suy ra \(x^2+\left(\frac{10-x}{2}\right)^2=10.\frac{10-x}{2}\)
\(\Leftrightarrow x=2\sqrt{5}\)(vì \(x>0\))
Vậy đường cao của hình thang là \(2\sqrt{5}cm\).
Câu 11.11.
Kẻ \(AE\perp AC,E\in CD\).
Khi đó \(AE//BD,AB//DE\)nên \(ABDE\)là hình bình hành.
Suy ra \(AE=BD=15\left(cm\right)\).
Kẻ đường cao \(AH\perp CD\)suy ra \(AH=12\left(cm\right)\).
Xét tam giác \(AEC\)vuông tại \(A\)đường cao \(AH\):
\(\frac{1}{AH^2}=\frac{1}{AE^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{AC^2}=\frac{1}{AH^2}-\frac{1}{AE^2}=\frac{1}{12^2}-\frac{1}{15^2}=\frac{1}{400}\)
\(\Rightarrow AC=20\left(cm\right)\)
\(S_{ABCD}=\frac{1}{2}AC.BD=\frac{1}{2}.15.20=150\left(cm^2\right)\),
Sửa đề: Đáy nhỏ bằng nửa đáy lớn và bằng độ dài hai cạnh bên
AB=CD/2=5cm
BD vuông góc BC
=>góc BDC+góc BCD=90 độ
AD=BC=AB=5cm
AB=AD
=>góc ABD=góc ADB
=>góc ADB=góc BDC
=>DB là phân giác của góc ADC
góc BDC+góc BCD=90 độ
=>1/2*góc BCD+góc BCD=90 độ
=>góc BCD=60 độ
=>góc BDC=30 độ
Xét ΔBDC vuông tại B có BD^2+BC^2=CD^2
=>BD=5*căn 3(cm)
Kẻ BH vuông góc CD
=>BH=BD*BC/CD=5/2*căn 3(cm)
Kẻ AH⊥BC, BK⊥CD, đường chéo AC⊥AD
Đặt AH=AB=x⇒AH=x
ΔAHD=ΔBKCΔAHD=ΔBKC (c.h - g.n)
⇒DH=CK=\(\dfrac{10-x}{2}\)
Vậy HC=HK+CK=x+\(\dfrac{10-x}{2}\)=\(\dfrac{x+10}{2}\)
Áp dụng hệ thức lượng trong ΔADC⊥A
Có
AH2=DH.HC⇒x2=\(\dfrac{10-x}{2}\cdot\dfrac{10+x}{2}\)
⇒4x2=100−x2⇒4x2=100−x2
⇒5x2=100⇒5x2=100
⇒x=2√5⇒x=25
Vậy AH=2√5
Kẻ AH vuông góc với BC, BK vuông góc với CD, đường chéo AC vuông góc với AD.
Đặt AH = AB = x => AH = x
Tam giác AHD = tam giác BKC ( c.h - g.n)
=> DH = CK = (10-x)/2
Vậy HC = Hk + CK = x + (10-x)/2 = (x-10)/2
Áp dụng hệ thức lượng trong tam giác ADC vuông tại A
Có AH^2 = DH.HC => x^2 = (10-x)/2 . (x-10)/2
=> 5x^2 = 20
=> x = 2√ 5
Vậy AH = 2√5
Kẻ đường cao góc AE \(\Rightarrow AE=AB\)
Lại có ABCD là hình thang cân \(\Rightarrow CD=AB+2DE=AE+2DE\Rightarrow DE=\dfrac{CD-AE}{2}=\dfrac{10-AE}{2}\)
\(EC=AB+DE=AE+DE=AE+\dfrac{10-AE}{2}=\dfrac{AE+10}{2}\)
Áp dụng hệ thức lượng trong tam giác vuông ACD có:
\(AE^2=DE.EC\Leftrightarrow AE^2=\left(\dfrac{10-AE}{2}\right)\left(\dfrac{10+AE}{2}\right)\)
\(\Leftrightarrow4AE^2=100-AE^2\Rightarrow AE=2\sqrt{5}\) \(\Rightarrow AB=2\sqrt{5}\)
\(S_{ABCD}=\dfrac{1}{2}AE.\left(AB+CD\right)=\dfrac{1}{2}.2\sqrt{5}.\left(2\sqrt{5}+10\right)=...\)
Ha AE;BF vuong goc vs CD => ABFE la hinh vuong
Dat AE = AB = EF = x > 0 => CE = DF = (CD - EF)/2 = (10 - x)/2; DE = CD - CE = 10 - (10 - x)/2 = (10 + x)/2;
Tam giac ACD vuong tai A duong cao AE nen co he thuc : AE² = CE.DE
<=> x² = (100 - x²)/4 <=> x² = 20 <=> x = 2√5 hay AE = 2√5