Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B.
Gọi O là tâm của hình vuông ABCD, nối S O ∩ B ' D ' = I .
Và nối AI cát SC tại C’ suy ra mp (AB’D’) cắt SC tại C’.
Tam giác SAC vuông tại A, có S C 2 = S A 2 + A C 2 = 6 a 2 ⇒ S C = a 6 .
Ta có B C ⊥ S A B ⇒ B C ⊥ A B ' và S B ⊥ A B ' ⇒ A B ' ⊥ S C .
Tương tự A D ' ⊥ S C suy ra S C ⊥ ( A B ' D ' ) ≡ ( A B ' C ' D ' ) ⇒ S C ⊥ A C ' .
Mà S C ' . S C = S A 2 ⇒ S C ' S C = S A 2 S C 2 = 2 3 và S B ' S B = S A 2 S B 2 = 4 5 .
Do đó V S . A B ' C ' = 8 15 V S . A B C = 8 30 V S . A B C D mà V S . A B C D = 1 3 . S A . S A B C D = 2 a 3 3 .
Vậy thể tích cần tính là V S . A B ' C ' D ' = 2 . V S . A B ' C ' = 16 a 3 45
Đáp án là C
V S . A ' B ' C ' V S . A B C = 1 27 ⇒ V S . A ' B ' C ' = 1 27 V S . A B C ⇒ V S . A B C D = 2 V S . A ' B ' C ' = 2 27 . 1 2 V S . A B C D = V 27 .
Đáp án B
Dễ thấy hình chóp S.A’B’C’D’ đồng dạng với hình chóp S.ABCD theo tỉ lệ k = 1 3
Do đó V S . A ' B ' C ' D ' V S . A B C D = 1 3 3 = 1 27 ⇒ S . A ' B ' C ' D ' = 1 m 3
Đáp án C
Dễ thấy hình chóp S.A'B'C'D' đồng dạng với hình chópS.ABCD theo tỷ số k = 1 3
Đáp án C
Gọi O = A C ∩ B D , G = A O ∩ A C '
Ta có A C ⊥ ( S B D ) mặt khác S C ⊥ B ' D ' ⇒ B ' D ' ⊥ ( S A C ) ⇒ B ' D ' / / B D
Theo Định lý Talet ta có S B ' B ' B = S D ' D ' D = S G G O = 2 ⇒ G là trọng tâm ∆ S A C ⇒ C ' là trung điểm SC
Vậy V S A B ' C ' D ' V S A B C D = V S A B ' C ' + V S A C ' D ' V S A B C D = 1 2 ( V S A B ' C ' V S A B C + V S A C ' D ' V S A C D ) = 1 2 S B ' . S C ' S B . S C + S C ' . S D ' S C . S D