Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S_{ABCD}=\frac{3V_{S.ABCD}}{SO}=\frac{3.16}{3}=16\left(cm^2\right)\)
\(AB=\sqrt{16}=4\left(cm\right)\)
\(H\)là trung điểm \(AB\)
suy ra \(SH\perp AB\).
\(SH=\sqrt{SO^2+OH^2}=\sqrt{3^2+2^2}=\sqrt{13}\)
\(S_{xq}=4.\frac{1}{2}SH.AB=2.\sqrt{13}.4=8\sqrt{13}\left(cm^2\right)\)
\(V_{chóp.tứ.giác.đêu}=\dfrac{1}{3}.S_{đáy}.h\\ \Leftrightarrow400=\dfrac{1}{3}.a^2.h=\dfrac{1}{3}.10^2.h\\ \Leftrightarrow h=\dfrac{400\times3}{10^2}=12\left(mm\right)\)
- Tính diện tích mặt đáy từ công thức: V=1/3. Sđ. h
- Tính độ dài cạnh mặt đáy: Sđ = a^2 => a= √Sđ
- Vì là hình c/đều nên mặt bên là t/giác đều => Cạnh mặt đáy bằng cạnh bên và trung tuyến cũng là đường cao, vẽ đường trung tuyến của mặt bên, tính 1/2 cạnh mặt đáy.
- Áp dụng Py-ta-go tính đường cao vừa vẽ theo công thức :
BC^2=AB^2+AC^2
- tính diện tích mặt bên nhân với 4 + với dt đáy ra diện tích hình chóp cần tìm.
Sxq=16*4*17/2=544cm2
Stp=544+16^2=800cm2
V=1/3*16^2*15=1280cm3
Nữa chu vi đáy của hình chóp đều:
\(16\cdot4:2=32\left(cm\right)\)
Diện tích xung quanh của hình chóp đều:
\(S_{xq}=32\cdot17=544\left(cm^2\right)\)
Diện tích mặt đáy của hình chóp đều:
\(S_đ=16^2=256\left(cm^2\right)\)
Diện tích toàn phần của hình chóp đều:
\(S_{tp}=S_đ+S_{xq}=544+256=800\left(cm^2\right)\)
Thể tích của hình chóp đều:
\(V=\dfrac{1}{3}\cdot256\cdot15=1280\left(cm^3\right)\)
a) Diện tích xung quanh của hình chóp tam giác đều là: \(\frac{{10.3}}{2}.12 = 180\) (\(c{m^2}\))
b) Diện tích xung quanh của hình chóp tứ giác đều là: \(\frac{{72.4}}{2}.77 = 11088\) (\(d{m^2}\))
Diện tích đáy của hình chóp tứ giác đều là: \({72^2}=5184\) (\(d{m^2}\))
Diện tích toàn phần của hình chóp tứ giác đều là: \(11088 + 5184 = 16 272\) (\(d{m^2}\))
Thể tích của hình chóp tứ giác đều là: \(\frac{1}{3}.5184.68,1=117676,8\) (\(d{m^3}\))
Diện tích HC đều bàng 1/3 đg cao nhân với diện tích đáy à