K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
CC
28 tháng 10 2017
tại sao đường tròn ( O, OA ) lại có thể cắt AB tại điểm khác A và cắt CD tại điểm khác C được ?
3 tháng 9 2019
A B C D F E G O H
a) Từ tứ giác AEBG là hình bình hành suy ra \(\frac{DE}{BG}=\frac{DE}{AE}=\frac{DC}{AB}=\frac{FD}{FB}\) (1)
Đồng thời ^FDE = 1800 - ^ADE = 1800 - ^ACB = ^FBG (2)
Từ (1) và (2) suy ra \(\Delta\)FED ~ \(\Delta\)FGB (c.g.c). Do vậy FD.FG = FB.FE (đpcm).
b) Tương tự câu a ta có \(\Delta\)FEC ~ \(\Delta\)FGA (c.g.c), suy ra ^FGA = ^FEC = 1800 - ^FEA
Vì ^FEA = ^FHA (Tính đối xứng) nên ^FGA = 1800 - ^FHA hay ^FGA + ^FHA = 1800
Vậy 4 điểm F,H,A,G cùng thuộc một đường tròn (đpcm).
Xét tam giác CAE:
Có: E thuộc đường tròn O bán kính AC
=> tg CAE là tg vuông
Xét tam giác FAC:
Có: F thuộc đường tròn O bán kính AC
=> tg FAC là tg vuông.
Xét tứ giác AEFC:
Có: E=F=90 (cmt)
=> tg AEFC là HBH
Mà trong HBH đg chéo cắt nhau tại trung điểm mỗi đường.
Mà: O là trg điểm AC
=> AC cắt EF tại O. Hay O là tđ của FE=>EO=FO
=>ĐPCM