Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình 1
Theo định lý ta lét trong tam giác ta có :
\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)=\(\dfrac{17}{27}=\dfrac{x}{x+9}\)=>27x=17x+153
=>x=15.3cm
Hình 2
Theo định lý ta lét trong tam giác ta có :
\(\dfrac{PE}{PQ}=\dfrac{PF}{PR}\)=\(\dfrac{16}{x}=\dfrac{20}{35}\)=>20x=560
=>x=28cm
Trong ΔABC, ta có: AD là đường phân giác của (BAC)
Suy ra: \(\frac{DB}{DC}=\frac{AB}{AC}\)(tính chất đường phân giác)
Mà AB = 15 (cm); AC = 20 (cm)
Nên \(\frac{DB}{DC}=\frac{15}{20}\)
uy ra: \(\frac{DB}{DB+DC}=\frac{15}{15+20}\)(tính chất tỉ lệ thức)
Suy ra: \(\frac{DB}{BC}=\frac{15}{35}\Rightarrow DB=\frac{15}{35}.BC=\frac{15}{35}.25=\frac{75}{7}cm\)
\(\Rightarrow DC=BC-BD=25-\frac{75}{7}=\frac{100}{7}cm\)
b. Kẻ AH ⊥ BC
Ta có: SABD = 1/2 AH.BD; SADC = 1/2 AH.DC
Suy ra :\(\frac{S_{ABD}}{S_{ADC}}=\frac{\frac{1}{2}AH.BD}{\frac{1}{2}AH.DC}=\frac{BD}{DC}\)
Mà\(\frac{DB}{DC}=\frac{15}{20}=\frac{3}{4}\)
\(\Rightarrow\frac{S_{ABD}}{S_{ADC}}=\frac{3}{4}\)
Lời giải
a)
Ta có \(\left\{{}\begin{matrix}MD=MB\\NA=NC\end{matrix}\right.\) \(\Rightarrow\)MN//DC
\(\Rightarrow\Delta OMN\approx\Delta ODC\approx OBA\)
Tỷ số đồng dạng
\(\dfrac{OM}{OD}=\dfrac{MN}{DC}=\dfrac{ON}{OC}\)\(\Rightarrow MN=\dfrac{OM}{OD}.DC=\dfrac{1}{4}.5,6=1,4\left(cm\right)\)
\(\dfrac{OM}{OB}=\dfrac{MN}{AB}\Rightarrow AB=\dfrac{OB}{OM}.MN=2MN=2,8\left(cm\right)\)
b)
\(\left\{{}\begin{matrix}CD=4MN\\AB=2MN\end{matrix}\right.\)
\(\Rightarrow\dfrac{CD-AB}{2}=\dfrac{4MN-2MN}{2}=MN\)
a) Theo đề bài ta có:
\(\dfrac{AD}{DC}=\dfrac{BA}{BC}=\dfrac{15}{10}=\dfrac{3}{2}\)
\(\dfrac{AD}{AD+DC}=\dfrac{15}{15+10}hay\dfrac{AD}{AC}=\dfrac{15}{25}\)
=> AD = \(\dfrac{15.AC}{25}=\dfrac{15.15}{25}=9\left(cm\right)\)
DC = AC - AD = 15 - 9 = 6 (cm)
Vậy AD = 9cm; DC = 6cm.
b) Vì BD \(\perp\) BE nên BE là đường phân giác của góc ngoài tại đỉnh B.
Áp dụng tính chất đường phân giác của góc ngoài ta có:
\(\dfrac{EC}{EA}=\dfrac{EC}{EC+AC}=\dfrac{BC}{BA}\)
hay \(\dfrac{EC}{EC+15}=\dfrac{10}{15}=\dfrac{2}{3}\)
=> EC = 30 (cm)
Vậy EC = 30cm.
ABDABD^ = ˆBDEBDE^, lại so le trong
=> AB // DE
=> ∆ABC ∽ ∆EDC
=> ABEDABED = BCDCBCDC = ACECACEC
=> 3636 = x3,5x3,5 = 2y2y
=> x = 3.3,563.3,56 = 1.75;
y = 6.236.23 = 4
vì góc ADB = góc BDE
=>AB // DE (so le trong)
vì AB//DE nên theo định lí ta - lét ta có :
\(\dfrac{CB}{CE}\) = \(\dfrac{CA}{CD}\)
=>\(\dfrac{x}{y}\) = \(\dfrac{2}{3,5}\) = \(\dfrac{4}{7}\)
vậy chiều dài CB là 4
CE là 7