Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`th1:`
`(x+1)(x^2-x+1):(x-3)(x^2+3x+9)`
`=(x^3+1^3):(x^3-3^3)`
`=(x^3+1):(x^3-27)`
`=(x^3+1)/(x^3-27)`
`=(x^3-27+28)/(x^3-27)`
`=1+28/(x^3-27)`
`**th2:`
`(x+1)(x^2-x+1)`
`=x^3+1^3=x^3+1`
`(x-3)(x^2+3x+9)`
`=x^3-3^3=x^3-27`
Minh xin loi ban nhe , ban sua lai giup minh cho x3 - 9 thanh x3 - 27
a) \(2\left(x^2-x\right)-2x^2=3\)
\(\Leftrightarrow2x^2-2x-2x^2=3\)
\(\Leftrightarrow-2x=3\Leftrightarrow x=-\frac{3}{2}\)
b) \(2\left(x^2+x\right)-2x=8\)
\(\Leftrightarrow2x^2+2x-2x=8\)
\(\Leftrightarrow2x^2=8\Leftrightarrow x^2=4\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=-2\end{array}\right.\)
a) 2 . ( x^2 - x ) - 2x^2 = 3
2x2-2x-2x2=0
-2x=0
x=0
Vậy x=0
b) 2 . ( x^2 + x ) - 2x = 8
2x2+2x-2x=8
2x2=8
x2=4=22=(-2)2
Vậy x=2;-2
\(=\dfrac{x^2-4y}{xy}\cdot\dfrac{x^2}{x-y}=\dfrac{x\left(x^2-4y\right)}{y\left(x-y\right)}\)
a) 2(x-1)2 - 4(x+3)2 + 2x(x-5)
= 2(x2 -2x +1)- 4(x2 + 6x +9) + 2x2 -10x
= 2x2 - 4x + 2 -4x2 - 24x - 36 + 2x2 - 10x
= (2x2 + 2x2 - 4x2) - (4x + 24x+10x) +(2-36)
= -38x-34
b) 2(2x+5)2 -3(4x+1)(1-4x)
= 2(4x2 + 20x + 25) + 3(4x+1)(4x-1)
= 8x2 +40x + 50 + 3(16x2 -1)
= 8x2 + 40x + 50 + 48x2 - 3
=56x2 +40x + 47
a, \(2\left(x-1\right)^2-4\left(x+3\right)^2+2x\left(x-5\right)\)
\(=2\left(x^2-2x+1\right)-4\left(x^2+6x+9\right)+2x\left(x-5\right)\)
\(=2x^2-4x+2-4x^2-24x-36+2x^2-10=-28x-44\)
b, \(2\left(2x+5\right)^2-3\left(4x+1\right)\left(1-4x\right)\)
\(=2\left(4x^2+20x+25\right)-3\left(1-16x^2\right)\)
\(=8x^2+40x+50-3+48x^2=56x^2+40x+47\)
Bài 1:
\(3a.\left(2a^2-ab\right)=6a^3-3a^2b\)
\(\left(4-7b^2\right).\left(2a+5b\right)=8a+20b-14ab^2-35b^3\)
Bài 2:
\(2x^2-6x+xy-3y=2x.\left(x-3\right)+y.\left(x-3\right)=\left(x-3\right).\left(2x+y\right)\)
Bài 3: Tại x = 3/2, y =1/3 thì Q = 67/9
Bài 4:
\(\left(\frac{1}{x+1}+\frac{2x}{1-x^2}\right).\left(\frac{1}{x-1}\right)\) \(\frac{1}{\left(x+1\right).\left(x-1\right)}+\frac{2x}{\left(1-x^2\right).\left(x-1\right)}=\frac{x-1}{\left(x+1\right).\left(x-1\right)^2}+\frac{-2x}{\left(x-1\right)^2.\left(x+1\right)}\)
= \(\frac{x-1-2x}{\left(x+1\right).\left(x-1\right)^2}=\frac{-\left(x+1\right)}{\left(x+1\right).\left(x-1\right)^2}=\frac{-1}{\left(x-1\right)^2}\)
\(\left(x-2\right)\left(x^2-5x+1\right)-x\left(x^2+11\right)=x^3-5x^2+x-2x^2+10x-2-x^3-11x=-7x^2-2\)
(\(x+1\)) + (\(x-1\))2
= \(x\) + 1 + \(x^2\) - 2\(x\) + 1
= \(x^2\) - (2\(x\) - \(x\)) + (1 + 1)
= \(x^2\) - \(x\) + 2
\(\left(x+1\right)+\left(x-1\right)^2\\ =\left(x+1\right)+\left(x^2-2x+1\right)\\ =x+1+x^2-2x+1\\ =x^2+\left(x-2x\right)+\left(1+1\right)\\ =x^2-x+2\)