Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\left(2x-5y\right)^2-\left(15y-6x\right)^2-\left|xy-90\right|\)
\(\Leftrightarrow P=\left(2x-5y\right)^2-\left(6x-15y\right)^2-\left|xy-90\right|\)
\(\Leftrightarrow P=\left(2x-5y\right)^2-3\left(2x-3y\right)^2-\left|xy-90\right|\)
\(\Leftrightarrow P=\left(2x-5y\right)^2.\left(1-3\right)-\left|xy-90\right|\)
\(\Leftrightarrow P=-4\left(2x-5y\right)^2-\left|xy-90\right|\)
\(\Leftrightarrow P=-\left[4\left(2x-5y\right)^2-\left|xy-90\right|\right]\)
Ta có \(\hept{\begin{cases}\left(2x-5y\right)^2\ge0\\\left|xy-90\right|\ge0\end{cases}}\forall xy\)
\(\Rightarrow\hept{\begin{cases}4\left(2x-5y\right)^2\ge0\\\left|xy-90\right|\ge0\end{cases}}\forall xy\)
\(\Rightarrow P=-\left[4\left(2x-5y\right)^2+\left|xy-90\right|\right]\le0\forall xy\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}4\left(2x-5y\right)^2=0\\\left|xy-90\right|=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(2x-5y\right)^2=0\\xy-90=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x-5y=0\\xy=90\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x=5y\\xy=90\end{cases}}\)
\(\Leftrightarrow2xy=5y^2\)\(\Leftrightarrow2.90=5y^2\Leftrightarrow5y^2=180\Leftrightarrow y^2=36\)
\(\Rightarrow\orbr{\begin{cases}y=6\\y=-6\end{cases}}\Rightarrow\orbr{\begin{cases}x=90:6=15\\x=90:\left(-6\right)=-15\end{cases}}\)
Vậy \(P_{max}=0\Leftrightarrow x=15;y=6\) hoặc x=-15; y=-6
Có 1 vài chỗ ko ok cho lắm bạn thông cảm
Học tốt
có |2x-5| luôn \(\ge0\forall x\in Q\)
cũng có \(\left|3y+1\right|\ge0\forall y\in Q\)
=> \(\left|2x-5\right|+\left|3y-1\right|\ge0\forall x;y\in Q\)
=>\(\hept{\begin{cases}2x-5=0\\3y-1=0\end{cases}}\)<=> \(\hept{\begin{cases}2x=5\\3y=1\end{cases}}\)<=> \(\hept{\begin{cases}x=\frac{2}{5}\\y=\frac{1}{3}\end{cases}}\)
vậy \(x=\frac{2}{5};y=\frac{1}{3}\)
em nhớ là phải dùng ngoặc nhọn như trên nhé! Nếu không sẽ sai đấy!
3 câu còn lại cũng tương tự
a) Ta có: \(\left|2x-5\right|\ge0\forall x\)
\(\left|3y+1\right|\ge0\forall y\)
Do đó: \(\left|2x-5\right|+\left|3y+1\right|\ge0\forall x,y\)
mà \(\left|2x-5\right|+\left|3y+1\right|=0\)
nên \(\left\{{}\begin{matrix}\left|2x-5\right|=0\\\left|3y+1\right|=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-5=0\\3y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=5\\3y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{5}{2}\\y=\frac{-1}{3}\end{matrix}\right.\)
Vậy: \(x=\frac{5}{2}\) và \(y=\frac{-1}{3}\)
b) Ta có: \(\left|3x-4\right|\ge0\forall x\)
\(\left|3y-5\right|\ge0\forall y\)
Do đó: \(\left|3x-4\right|+\left|3y-5\right|\ge0\forall x,y\)
mà \(\left|3x-4\right|+\left|3y-5\right|=0\)
nên \(\left\{{}\begin{matrix}\left|3x-4\right|=0\\\left|3y-5\right|=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-4=0\\3y-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=4\\3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{4}{3}\\y=\frac{5}{3}\end{matrix}\right.\)
Vậy: \(x=\frac{4}{3}\) và \(y=\frac{5}{3}\)
c) Ta có: |16-|x||≥0∀x
\(\left|5y-2\right|\ge0\forall y\)
Do đó: |16-|x||+|5y-2|≥0∀x,y
mà |16-|x||+|5y-2|=0
nên \(\left\{{}\begin{matrix}\text{|16-|x||}=0\\\left|5y-2\right|=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}16-\left|x\right|=0\\5y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left|x\right|=16\\5y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{16;-16\right\}\\y=\frac{2}{5}\end{matrix}\right.\)
Vậy: \(x\in\left\{16;-16\right\}\) và \(y=\frac{2}{5}\)
\(a,2x\left(4x^2-5\right)\)
\(=8x^3-10x\)
\(b,3x^2\left(2y-1\right)-\left[2x^2\left(5y-3\right)-2x\left(3x^2+1\right)\right]\)
\(=6x^2y-3x^2-\left[10x^2y-6x^2-6x^3-2x\right]\)
\(=6x^2y-3x^2-10x^2y+6x^2+6x^3+2x\)
\(=-\left(10x^2y-6x^2y\right)+\left(6x^2-3x^2\right)+6x^3+2x\)
\(=-4x^2y+3x^2+6x^3+2x\)
Khó ghê !!!
Mik xin lỗi !!! Mik ko làm được nhé !!!