\(2log_2x.log_3x+5log_2x-8log_3x-20=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
21 tháng 2 2017

Lời giải:

Vì phương trình có nghiệm \(z_1=-1+i, z_2=-1-i\) nên bằng định lý Viete đảo ta có một nhân tử của phương trình là \(z^2+2z+2\)

Do đó dễ dàng phân tích phương trình trên như sau:

\(z^4+4z^3+11z^2+14z+10=0\)

\(\Leftrightarrow (z^2+2z+2)(z^2+2z+5)=0\)

\(\Rightarrow \left\{\begin{matrix} z^2+2z+2=0\\ z^2+2z+5=0\end{matrix}\right.\Rightarrow \) \(\left[\begin{matrix}z=-1+i\\z=-1-i\\z=-1+2i\\z=-1-2i\end{matrix}\right.\)

22 tháng 2 2017

bạn giỏi thậtyeu

27 tháng 5 2017

\(3x^2+2x-1=0\)

\(\Rightarrow3x^2+3x-x-1=0\)

\(\Rightarrow3x.\left(x+1\right)-\left(x+1\right)=0\)

\(\Rightarrow\left(x+1\right).\left(3x-1\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x+1=0\\3x-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-1\\3x=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-1\\x=\dfrac{1}{3}\end{matrix}\right.\)

Vậy \(x\in\left\{-1;\dfrac{1}{3}\right\}\)

Chúc bạn học tốt nha!!!

Em làm bài này không chắc lắm! Nếu sai thì em xin lỗi anh Hoàng nha! Chưa thấy ai làm em làm đó nha!!!

Bài làm:

\(3x^2+2x-1=0\\ < =>x^2+2x^2+2x+1-2=0\\ < =>\left(x^2+2x+1\right)+\left(2x^2-2\right)=0\\ < =>\left(x+1\right)^2+2\left(x-1\right)\left(x+1\right)=0\\ < =>\left(x+1\right)\left(x+1+2\left(x-1\right)\right)=0\\ < =>\left(x+1\right)\left(x+1+2x-2\right)=0\\ < =>\left(x+1\right)\left(3x-1\right)=0\\ =>\left[{}\begin{matrix}x+1=0\\3x-1=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=-1\\x=\dfrac{1}{3}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
17 tháng 3 2021

Lời giải:

b/ $x^2-4x+20=0$

$\Leftrightarrow (x-2)^2+16=0\Leftrightarrow (x-2)^2=-16< 0$ (vô lý)

Do đó pt vô nghiệm.

c/ $2x^3-3x+1=0$

$\Leftrightarrow 2x^2(x-1)+2x(x-1)-(x-1)=0$

$\Leftrightarrow (x-1)(2x^2+2x-1)=0$

$\Rightarrow x-1=0$ hoặc $2x^2+2x-1=0$

$\Leftrightarrow x=1$ hoặc $x=\frac{-1\pm \sqrt{3}}{2}$

 

15 tháng 9 2017

Câu 2 đề thiếu rồi kìa. Cái cuối cùng là tổ hợp chập bao nhiêu của 2n + 1 thế???

15 tháng 9 2017

1/ Vì M thuộc \(d_3\) nên ta có tọa độ của M là: \(M\left(2a;a\right)\)

Khoản cách từ M đến \(d_1\) là:

\(d\left(M,d_1\right)=\dfrac{\left|2a+a+3\right|}{\sqrt{1^2+1^2}}=\dfrac{\left|3a+3\right|}{\sqrt{2}}\)

Khoản cách từ M đến \(d_2\) là:

\(d\left(M,d_2\right)=\dfrac{\left|2a-a-4\right|}{\sqrt{1^2+1^2}}=\dfrac{\left|a-4\right|}{\sqrt{2}}\)

Theo đề bài ta có:

\(\dfrac{\left|3a+3\right|}{\sqrt{2}}=2.\dfrac{\left|a-4\right|}{\sqrt{2}}\)

\(\Leftrightarrow\left|3a+3\right|=2.\left|a-4\right|\)

\(\Leftrightarrow a^2+10a-11=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a=-11\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}M\left(2;1\right)\\M\left(-22;-11\right)\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
19 tháng 11 2017

Lời giải:

Ta có:

\(\log_2(x+4)+2\log_4(x+2)=2\log_{\frac{1}{2}}\frac{1}{8}=6\)

\(\Leftrightarrow 2\log_4(x+4)+2\log_4(x+2)=6\)

\(\Leftrightarrow \log_4(x+4)+\log_4(x+2)=3\)

\(\Leftrightarrow \log_4[(x+2)(x+4)]=3\)

\(\Leftrightarrow (x+2)(x+4)=4^3=64\)

\(\Leftrightarrow x^2+6x-56=0\)

\(\Leftrightarrow x=-3\pm \sqrt{65}\)

Kết hợp với ĐKXĐ ta suy ra \(x=-3+\sqrt{65}\) là nghiệm của pt

19 tháng 11 2017

bạn ơi mình hỏi tí, sao log\(^{\left(x+4\right)}_2=2log^{\left(x+4\right)}_4\)

1 tháng 4 2016

\((6^2)^x.6^3<2^x.2^7.\dfrac{(3^3)^x}{3}=(2.3^3)^x.\dfrac{2^7}{3}\Leftrightarrow \left(\dfrac{2.3^3}{6^2}\right)^x>\dfrac{3.6^3}{2^7}\)

Suy ra \(\left(\dfrac{3}{2}\right)^x>\left(\dfrac{3}{2}\right)^4\).

Vậy x>4

22 tháng 2 2020

ĐKXĐ: \(\left\{{}\begin{matrix}4x-20\ne0\\50-2x^2\ne0\\6x+30\ne0\end{matrix}\right.\)=> \(\left\{{}\begin{matrix}4x-20\ne0\\x^2-25\ne0\\6x+30\ne0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x-5\ne0\\x+5\ne0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x\ne5\\x\ne-5\end{matrix}\right.\)

=> \(x\ne\pm5\)

Ta có : \(\frac{3}{4x-20}+\frac{15}{50-2x^2}+\frac{7}{6x+30}=0\)

=> \(\frac{3}{4\left(x-5\right)}-\frac{15}{2\left(x-5\right)\left(x+5\right)}+\frac{7}{6\left(x+5\right)}=0\)

=> \(\frac{9\left(x+5\right)}{12\left(x^2-25\right)}-\frac{90}{12\left(x^2-25\right)}+\frac{14\left(x-5\right)}{12\left(x^2-25\right)}=0\)

=> \(9\left(x+5\right)-90+14\left(x-5\right)=0\)

=> \(9x+45-90+14x-70=0\)

=> \(23x=115\)

=> \(x=5\) ( KTM )

Vậy phương trình vô nghiệm .

15 tháng 4 2016

-log2x2_  log2x2- 20=0

↔ pt này vô ng bạn ơi!!! xem lại đầu bài.

18 tháng 4 2016

Bài này phương trình có tận 4 nghiệm chứ không phải vô nghiệm đâu bạn Đỗ đại học nhé

Điều kiện \(x\ne0\)

Ta có từ phương trình ban đầu cho \(\Leftrightarrow4\log_2^2\left|x\right|-2\log_2\left|x\right|-20=0\)

                                                     \(\Leftrightarrow2\log_2^2\left|x\right|-\log_2\left|x\right|-10=0\)

Đặt \(t=\log_2\left|x\right|\) ta được phương trình \(2t^2-t-10=0\Leftrightarrow\begin{cases}t=-2\\t=\frac{5}{2}\end{cases}\)

Với \(t=2\Rightarrow\log_2\left|x\right|=-2\Leftrightarrow\left|x\right|=\frac{1}{4}\Leftrightarrow x=\pm\frac{1}{4}\)

Với \(t=\frac{5}{2}\Rightarrow\log_2\left|x\right|=\frac{5}{2}\Leftrightarrow\left|x\right|=\sqrt{32}\Leftrightarrow x=\pm\sqrt{32}\)

Vậy phương trình có 4 nghiệm : \(x=\frac{1}{4};x=-\frac{1}{4};x=\sqrt{32};x=-\sqrt{32}\)