K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2015

\(2a^2+2b^2=5ab\)

\(2a^2-5ab+2b^2=0\)

\(2a^2-4ab-ab-2b^2=0\)

\(2a\left(a-2b\right)-b\left(a-2b\right)=0\)

( 2a -  b )(a-2b ) = 0 

=> 2a - b = 0 hoặc a - 2b = 0 

=> 2a = b và a= 2 b  ( loại vì b > a > 0 )

Thay b = 2a ta có: 

\(\frac{a+b}{a-b}=\frac{2a+a}{a-2a}=\frac{3a}{-a}=-3\)

7 tháng 11 2018

\(2a^2+2b^2=5ab\)

<=>   \(2a^2+2b^2-5ab=0\)

<=>  \(2a^2-4ab-ab+2b^2=0\)

<=>   \(2a\left(a-2b\right)-b\left(a-2b\right)=0\)

<=>  \(\left(2a-b\right)\left(a-2b\right)=0\)

<=>  \(\orbr{\begin{cases}2a=b\\a=2b\end{cases}}\)

Do  \(b>a>0\)

=>  \(2a=b\)

\(A=\frac{a+b}{a-b}=\frac{a+2a}{a-2a}=\frac{3a}{-a}=-3\)

29 tháng 12 2017

Sửa lại đề bài:  1 / 2a- b 

                   ( MÁY MK KO ĐÁNH ĐC PHÂN SỐ MONG BN THÔNG CẢM)

mới lm đc nhé bn! 

a) ĐKXĐ: bn tự lm nhé ! 

bn biến đổi: 2a3-b+2a-a2b =  (2a-b)  + ( 2a3-a2b) = (2a-b) + a2(2a-b) = (2a-b)(a2+1) 

rồi bn nhân 1 / 2a+b với a2+1 rồi trừ 2 phân thức với nhau sẽ ra 0 => A=0

29 tháng 12 2017

Bạn nào giúp tớ với!

22 tháng 6 2019

\(4a^2+b^2=5ab\)

\(\Rightarrow4a^2-5ab+b^2=0\)

\(\Rightarrow\left(4a^2-4ab\right)-\left(ab-b^2\right)=0\)

\(\Rightarrow4a\left(a-b\right)-b\left(a-b\right)=0\)

\(\Rightarrow\left(a-b\right)\left(4a-b\right)=0\)

Làm nốt

27 tháng 7 2018

2a^2 +2b^2 -5ab = 0

2a^2 -4ab -ab +2b^2 = 0

2a(a-2b) -b(a-2b) = 0

(2a-b)(a-2b) = 0

Suy ra: 2a=b hoặc a=2b

Mà a>b>0 nên a=2b

Ta có: P = a+b/a-b = 2b+b/ 2b-b = 3b/b=3

Vậy P = 3

Chúc bạn học tốt.

27 tháng 7 2018

Ta có: \(2a^2+2b^2=5ab\)

\(\Leftrightarrow2a^2+2b^2-5ab=0\)

\(\Leftrightarrow2a^2-4ab-ab+2b^2=0\)

\(\Leftrightarrow2a\left(a-2b\right)-b\left(a-2b\right)=0\)

\(\Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a-2b=0\\2a-b=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=2b\\2a=b\end{cases}}}\)

Mà a > b > 0 nên a = 2b

Thế vào, ta được: \(P=\frac{a+b}{a-b}=\frac{2b+b}{2b-b}=\frac{3b}{b}=3\)

Vậy P = 3

26 tháng 11 2017

Ta có: \(2\left(a^2+b^2\right)=5ab\Rightarrow2a^2+2b^2-5ab=0\) 0 

\(\Rightarrow2a^2-ab-4ab+2b^2=0\) \(\Rightarrow a\left(2a-b\right)-2b\left(2a-b\right)=0\)

\(\Rightarrow\left(2a-b\right)\left(a-2b\right)=0\) \(\Rightarrow\orbr{\begin{cases}2a-b=0\\a-2b=0\end{cases}\Rightarrow\orbr{\begin{cases}2a=b\\a=2b\end{cases}}}\)

TH1: 2b=a thay vào P ta được:

\(P=\frac{3.2b-b}{2.2b+b}=\frac{6b-b}{4b+b}=\frac{5b}{5b}=1\)

TH2: 2a=b \(\Rightarrow P=\frac{3a-2a}{2a+2a}=\frac{a}{4a}=\frac{1}{4}\)

Vậy \(\orbr{\begin{cases}P=1\\P=\frac{1}{4}\end{cases}}\)

18 tháng 9 2019

bạn ơi, mình sửa lại nhá.

a>b>0 => a=2b (không có th b=2a)

=> P=1

23 tháng 2 2015

Ta có : 2(a2 +b2) = 5ab <=> 2a2 - 5ab + 2b2 = 0 <=> 2a2 - 4ab - ab + 2b2 =0 <=> 2a(a - 2b) - b(a - 2b) =0

<=> (2a - b)(a - 2b) = 0 <=> a = 2b hay b = 2a

Vì a > b > 0 nên chỉ xảy ra trường hợp a = 2b. Do đó \(P=\frac{3.2b-b}{2.2b+b}=\frac{5b}{5b}=1\)

 

10 tháng 11 2015

1/3 còn cách giải chờ mình 1 chút

10 tháng 11 2015

Ta có: \(4a^2+b^2-5ab=0\Leftrightarrow4a^2-4ab+b^2-ab=0\Leftrightarrow4a\left(a-b\right)+b\left(b-a\right)=0\Leftrightarrow\left(a-b\right)\left(4a-b\right)=0\)

nên \(a=b\) hoặc \(4a=b\)

Vì \(2a>b>0\Rightarrow\frac{2a}{b}>1\), ta lấy \(a=b\)

Thay \(a=b\) vào phân thức \(\frac{ab}{4a^2-4b^2}\), ta được:

\(A=\frac{1}{3}\)

ĐKXĐ : \(a\ne b\)\(;\)\(a\ne-b\)

\(4a^2+b^2=5ab\)

\(\Leftrightarrow\)\(\left(4a^2-4ab\right)-\left(ab-b^2\right)=0\)

\(\Leftrightarrow\)\(4a\left(a-b\right)-b\left(a-b\right)=0\)

\(\Leftrightarrow\)\(\left(a-b\right)\left(4a-b\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}a-b=0\\4a-b=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=b\left(loai\right)\\4a=b\end{cases}}}\)

\(\Rightarrow\)\(4a=b\)

\(\Rightarrow\)\(M=\frac{ab}{a^2-b^2}=\frac{a.4a}{\left(a-b\right)\left(a+b\right)}=\frac{4a^2}{\left(a-4a\right)\left(a+4a\right)}=\frac{4a^2}{-15a^2}=\frac{-4}{15}\)

...