Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(7^6+7^5-7^4=7^4\cdot\left(7^2+7-1\right)\\ =7^4\cdot\left(49+7-1\right)\\ =7^4\cdot55\\ \Rightarrow7^4\cdot55⋮55\Leftrightarrow7^6+7^5-7^4⋮55\\ \RightarrowĐpcm\)
\(7^6+7^5-7^4=7^4\left(7^2+7-1\right)=7^4\left(49+6\right)=7^4\cdot55⋮55\left(đpcm\right)\)
165 + 215 = (24)5 + 215 = 2(4.5) + 215 = 220 + 215 = 215 ( 25 + 1) = 215 . (32 + 1 ) = 33 . 215
chia hết cho 33
b, 81^ 7 - 27 ^9 - 9 ^13 = ( 3 ^4 ) ^ 7 - (3^3 ) ^ 9 - (3^2)^13 = 3^28 - 3 ^27 - 3^26
= 3^ 26+ ( 3^2 - 3 - 1 ) = 3^26 . 5 = 3^22 . 3^4 . 5 = 3^22 . 81.5 = 3^ 22. 405 chia hết cho 405
a,76+75-74 =74.(72+7-1)=74.55
=>74.55 chia hết cho 55
=>76+75-74 chia hết cho 55
b)165+215=(24)5+215=220+215=215.(25+1)=215.33
=>215.3 chia hết cho 33
=>165+215 chia hết cho 33
a,76+75-74 =74.(72+7-1)=74.55
=>74.55 chia hết cho 55
=>76+75-74 chia hết cho 55
b)165+215=(24)5+215=220+215=215.(25+1)=215.33
=>215.3 chia hết cho 33
=>165+215 chia hết cho 33
<=>\(7^4.\left(7^2+7-1\right)\)
<=>\(7^4.55\)
vì \(7^4\)là số tự nhiên
nên\(7^4.55⋮55\)
Vậy\(7^6+7^5-7^4⋮55\left(đpcm\right)\)
- ta có \(7^{2k}\)với k lẻ thì sẽ có tận cùng bằng 9 nên 7^6 có tận cùng bằng 9
- có \(7^{4k+1}\)có tận cùng bằng 7 nên 7^5 có tận cùng =7
- \(7^{2k}\)với k chăn thì có tận cùng bằng 1
- tóm lại ta có \(7^6+7^5-7^4\)=.....9+.....7-......1=......5 vì số này có tận cùng bằng 5 nên chia hết cho 5
- k mình nha
- 76+75-74 chia het cho 55
Đặt A = 76+75-74
=> A = 74.( 72 + 7 - 1 )
=> A = 74 . ( 49 + 6 )
=> A = 74 . 55
=> A chia hết cho 55
Đặt B = 817 + 279 - 9 ( Phần này hơi khó nhưng mình làm giùm bạn theo cách MOD )
Gọi I = 817
Ta có : 405 = 81 . 5
vì 817 đồng dư với 0 ( Mod 81) => I chia hết cho 81 => I = 81k ( k\(\ne\)0) (1)
Vì 81 đồng dư với 1 ( Mod 5 ) => 817 đồng dư với 17 đồng dư với 1 (Mod 5 )
=> I - 1 chia hết cho 5 ( 2 )
Mà I = 81k (theo 1)
=> I - 1 = 81k -1 ( 3 )
=> I - 1 = 80k + k - 1
Mà I - 1 Chia hết cho 5 ( theo 2 ) , 80k chia hết cho 5
=> k - 1 chia hết cho 5
Đặt k = 5q + 1
Thay vào Biểu Thức 3 ta có :
I - 1 = 81 (5q + 1) - 1
=> I = 405q + 81
=> I chia cho 405 dư 81
Gọi 279 là H
Ta có :
279 đồng dư với 0 (Mod 81)
=> H chia Hết 81 => H = 81k ( k\(\ne\)0)
Vì 279 = 327
Mà 34 đồng dư với 1 theo (mod 5)
327 = 324 . 27 mà 324 đồng dư với 1 (mod 5) ; 27 chia 5 dư 2
=> 327 đồng dư với 1 . 2 = 2 (mod 5 )
=> H - 2 chia hết cho 5
vì H = 81k
=> H - 2 = 81k - 2
=> H - 2 = 80k + k - 2
Vì H - 2 chia hết cho 5 ; 80k chia hết cho 5
=> k - 2 chia hết cho 5
Đặt k = 5q + 2
Thay vào Ta có :
H = 81 ( 5q + 2 )
=> H = 405q + 162
=> H chia 405 dư 162
Ta có :
I + H - 9 đồng dư với 81 + 162 - 9 = 234
Như vậy 817 +279-9 không chia hết cho 405
hay nói cách khác là bài toán bị sai
\(7^6+7^5-7^4=7^4\left(7^2+7-1\right)=55\cdot7^4⋮55^{đpcm}\)
76+75-74=74(72+7-1)=74*55 chia hết cho 55
=> đpcm
t i c k cho mk nha