K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2015

2A=8(32+1)(34+1)......(364+1)

2A=(32-1)(32+1)(34+1)......(364+1)

2A=(34-1)((34+1)....(364+1)

2A=(364-1)(364+1)

2A=3128-1

Ta có :2A=B=>A<B

6 tháng 7 2016

\(S=4\cdot\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\cdot...\cdot\left(3^{64}+1\right)\)

\(\left(3^2-1\right)S=4\cdot\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\cdot...\cdot\left(3^{64}+1\right)\)

\(8S=4\cdot\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\cdot...\cdot\left(3^{64}+1\right)\)

\(2S=\left(3^8-1\right)\left(3^8+1\right)\cdot...\cdot\left(3^{64}+1\right)\)

...

\(2S=3^{128}-1\)

Vậy S < 3128 - 1

10 tháng 10 2018

\(A=4\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)

\(=\frac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)

\(=\frac{1}{2}\left(3^4-1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)

\(=\frac{1}{2}\left(3^{128}-1\right)< B\)

10 tháng 10 2018

\(A=4\left(3^2+1\right)\left(3^4+1\right)....\left(3^{64}+1\right)\)

\(\Rightarrow2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)

\(=\left(3^4-1\right)\left(3^4+1\right).....\left(3^{64}+1\right)=\left(3^{64}-1\right)\left(3^{64}+1\right)=3^{128}-1=B\)

\(\Rightarrow A< B\)

14 tháng 7 2018

\(A=4\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(=\frac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(=\frac{1}{2}\left(3^4-1\right)\left(3^4+1\right)....\left(3^{64}+1\right)\)

                          \(.........\)

\(=\frac{1}{2}\left(3^{168}-1\right)\)\(< \)\(3^{168}-1\)

\(\Rightarrow\)\(A< B\)

17 tháng 7 2018

Tại sao 4 lại trở thành 2 vậy. Giải thích giúp mình nhé.

9 tháng 8 2016

a) \(A=1999\cdot2001=\left(2000-1\right)\left(2000+1\right)=2000^2-1\)

=> \(A< B\)

b) \(A=12^6\)

    \(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

       \(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

      \(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

      \(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)

      \(=\left(2^8-1\right)\left(2^8+1\right)=2^{16}-1\)

=> \(A>B\)

c) \(A=2011\cdot2013=\left(2012-1\right)\left(2012+1\right)=2012^2-1\)

   \(B=2012^2\)

=> \(A< B\)

d) \(A=4\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

        \(=\frac{\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)}{2}\)

          \(=\frac{\left(3^4-1\right)\left(3^4+1\right)..\left(3^{64}+1\right)}{2}\)

          \(=\frac{\left(3^8-1\right).....\left(3^{64}+1\right)}{2}\)

           \(=\frac{3^{128}-1}{2}\)

 \(B=3^{128}-1\)

=> \(A< B\)

Cảm ơn bạn 

28 tháng 9 2018

Xét biểu thức A

\(A=8\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(=\left(3^4-1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(...=\left(3^{64}-1\right)\left(3^{64}+1\right)=3^{128}-1\)

Vậy \(A=B\)

3 tháng 6 2015

A=4(32+1)(34+1)(38+1)...(364+1)

=>2A=8(32+1)(34+1)(38+1)....(364+1)

=(32-1)(32+1)(34+1)(38+1).....(364+1)

=(34-1)(34+1)(38+1)....(364+1)

=(38-1)(38+1).....(364+1)

tương tự như thế ta được

2A=3128-1

=>A\(\frac{3^{128}-1}{2}\)

=>B>A