Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta co (a+b+c)2=a2+b2+c2+2ab-2bc-2ac
=a2+b2+[c2+2(ab-bc-ac)]
=a2+b2
Lời giải:
a)
$(a-b)^3=(a-b)^2.(a-b)=(b-a)^2.-(b-a)=-(b-a)^3$
b)
$(-a-b)^2=[-(a+b)]^2=(-1)^2(a+b)^2=(a+b)^2$
c)
$(x+y)^3=x^3+3x^2y+3xy^2+y^3$
$=x^3-6x^2y+9x^2y-6xy^2+9xy^2+y^3$
$=(x^3-6x^2y+9xy^2)+(y^3-6xy^2+9x^2y)$
$=x(x^2-6xy+9y^2)+y(y^2-6xy+9x^2)$
$=x(x-3y)^2+y(y-3x)^2$
d)
$(x+y)^3-(x-y)^3=x^3+3xy(x+y)+y^3-[x^3-3xy(x-y)-y^3]$
$=2y^3+3xy[(x+y)+(x-y)]=2y^3+6x^2y=2y(y^2+3x^2)$
Lời giải:
a)
$(a-b)^3=(a-b)^2.(a-b)=(b-a)^2.-(b-a)=-(b-a)^3$
b)
$(-a-b)^2=[-(a+b)]^2=(-1)^2(a+b)^2=(a+b)^2$
c)
$(x+y)^3=x^3+3x^2y+3xy^2+y^3$
$=x^3-6x^2y+9x^2y-6xy^2+9xy^2+y^3$
$=(x^3-6x^2y+9xy^2)+(y^3-6xy^2+9x^2y)$
$=x(x^2-6xy+9y^2)+y(y^2-6xy+9x^2)$
$=x(x-3y)^2+y(y-3x)^2$
d)
$(x+y)^3-(x-y)^3=x^3+3xy(x+y)+y^3-[x^3-3xy(x-y)-y^3]$
$=2y^3+3xy[(x+y)+(x-y)]=2y^3+6x^2y=2y(y^2+3x^2)$
a) ta có: \(\left(a-b\right)^3=a^3-3a^2b+3ab^2-b^3\)(1)
\(-\left(b-a\right)^3=-\left(b^3-3b^2a+3ba^2-a^3\right)\)
\(=a^3-3a^2b+3ab^2-b^3\)(2)
từ (1) và (2) \(\Rightarrow\left(a-b\right)^3=-\left(b-a\right)^3\)
b) ta có: \(\left(a+b\right)^2=a^2+2ab+b^2\)(3)
\(\left(-a-b^2\right)=\left(-a\right)^2-2\left(-a\right)\cdot b+\left(-b\right)^2\)
\(=a^2+2ab+b^2\)(4)
từ (3) và (4) \(\Rightarrow\left(-a-b\right)^2=\left(a+b\right)^2\)
\(a.\left(a-b\right)^3=-\left(b-a\right)^3\)
\(\Leftrightarrow\left(a-b\right)^3=\left(a-b\right)^3\)
Học tốt!
a) \(-\left(b-a\right)^3=-\left(b-a\right).\left(b-a\right)^2\)
\(=\left(a-b\right)\left(a-b\right)^2=\left(a-b\right)^3\)
b) \(\left(-a-b\right)^2=\left(-a-b\right)\left(-a-b\right)=\left(a+b\right)\left(a+b\right)=\left(a+b\right)^2\)
\(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\)
\(c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\left(\frac{a}{b}\right)\left(\frac{b}{c}\right)\left(\frac{c}{d}\right)\)
\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau có :
\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)
Mà \(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a}{d}\)
\(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
Vậy ...
Vì \(a+b+c=0\)
\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca=0\)
\(\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)
\(\Rightarrow\left(a^2+b^2+c^2\right)^2=\left(-2ab-2bc-2ca\right)^2\)
Đến đó bạn dùng hằng đẳng thức (a+b)2 để làm tiếp nha
a,
\(x^2+4y^2-x+4y+2=\left(x^2-x+\dfrac{1}{4}\right)+4\left(y^2+y+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+4\left(y+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\forall x,y\)
b,
\(a^3+b^3+c^3=\left(a+b+c\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)=0-3\left(-c\right)\left(-a\right)\left(-b\right)=0-3\left(-abc\right)=3abc\left(dpcm\right)\)
\(\Rightarrow a^2x^2+b^2x^2+c^2x^2+a^2y^2+b^2y^2+c^2y^2+a^2z^2+b^2z^2+c^2z^2=a^2x^2+b^2y^2+c^2z^2+2abxy+2bcyz+2acxz\)
\(\Rightarrow a^2y^2+a^2z^2+b^2x^2+b^2z^2+c^2x^2+c^2y^2=2abxy+2bcyz+2acxz\)
\(\Rightarrow\left(a^2y^2-2abxy+b^2x^2\right)+\left(a^2z^2-2acxz+c^2x^2\right)+\left(b^2z^2-2bcyz+c^2y^2\right)=0\)
\(\Rightarrow\left(ay-bx\right)^2+\left(az-cx\right)^2+\left(bz-cy\right)^2=0\)
vì \(\frac{x}{a}=\frac{y}{b}\Rightarrow ay=bc\Rightarrow\left(ay-bx\right)^2=0\)
\(\frac{y}{b}=\frac{z}{c}\Rightarrow cy=bz\Rightarrow\left(bz-cy\right)^2=0\)
\(\frac{x}{a}=\frac{z}{c}\Rightarrow cx=az\Rightarrow\left(az-cx\right)^2=0\)
\(\Rightarrow\left(ay-bx\right)^2+\left(az-cx\right)^2+\left(bz-cy\right)^2=0\)luôn đúng
\(\Rightarrow\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)=\left(ax+by+cz\right)^2\)
3/ \(x^5+y^5\ge x^4y+xy^4\)
\(\Leftrightarrow x^4\left(x-y\right)-y^4\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)\left(x^4-y^4\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\left(x^2+y^2\right)\ge0\) (đúng)
bài 1
theo bài ra ta có
a + b + c = 0 => c = -[a+b] [ 1 ]
Thay (1) vao a^3+b^3+c^3 ta có:
a^3+b^3+[-(a+b)]^3=3ab[-(a+b)]
<=>a^3+b^3-(a+b)=-3ab(a+b)
<=> a3+ b3- a3 -3a2b- 3ab2- b3= -3a2b- 3ab2
<=> 0= 0
vậy ta có đpcm.
Với mọi số thực:
`(a-b)^2>=0`
`<=>a^2-2ab+b^2>=0`
`<=>a^2+b^2>=2ab`
`<=>2(a^2+b^2)>=a^2+2ab+b^2`
`<=>2(a^2+b^2)>=(a+b)^2=4`
`<=>a^2+b^2>=2(đpcm)`
Dấu "=" `<=>a=b=1`