Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chào bạn!
Ta sẽ chứng minh bài toán này theo phương pháp phản chứng
Giả sử \(\left(a;c\right)=m\)\(V\text{ới}\)\(m\in N\)\(m\ne1\)
Khi đó \(\hept{\begin{cases}a=k_1m\\c=k_2m\end{cases}}\)
Thay vào \(ab+cd=p\)ta có : \(k_1mb+k_2md=p\Leftrightarrow m\left(k_1b+k_2d\right)=p\)
Khi đó p là hợp số ( Mâu thuẫn với đề bài)
Vậy \(\left(a;c\right)=1\)(đpcm)
đặt 3n+2 và 2n+1 = d
suy ra 3n+2 chia hết cho d ; 2n+1 chia hết cho d
suy ra : (3n+2)-(2n+1) chia hết cho d
suy ra : 2.(3n+2)-3.(2n+1) chia hết cho d
suy ra : 1 chia hết cho d
suy ra d=1
vậy 3n+2 và 2n+1 là hai số nguyên tố cùng nhau
tick cho mình nhé đúng rồi đấy
Gọi UCLN(2n+5, 3n+7) là d
Ta có 2n+5 chia hết cho d
=> 3(2n+5) chia hết cho d
=> 6n+15 chia hết cho d (1)
Ta có: 3n+7 chia hết cho d
=> 2(3n+7) chia hết cho d
=> 6n+14 chia hết cho d (2)
Từ (1) và (2) suy ra: (6n+15) -( 6n+14) chia hết cho d
=> 1 chia hết cho d
=> d=1
=> UCLN(2n+5, 3n+7) =1
Vậy 2n+5, 3n+7 là hai số nguyên tố cùng nhau
- Nếu (1) sai tức là 3 kết luận còn lại đúng ta thấy mẫu thuẫn giữa (2) và (3) vì m + n = 2n + 5 + n = 3n + 5, không là bội của 3, vô lý (loại)
- Nếu (2) sai tức là 3 kết luận còn lại đúng ta thấy mẫu thuẫn giữa (3) và (4) vì: m + 7n = m + n + 6n, là bội của 3, không là số nguyên tố (loại)
- Nếu (4) sai tức là (3) kết luận còn lại đúng ta cũng thấy mâu thuẫn giữa (2) và (3) như trên (loại)
Do đó, (3) là kết luận sai
Từ (1) và (2) cho thấy 2n + 6 chia hết cho n
Vì 2n chia hết cho n nên 6 chia hết cho n
Mà \(n\in N\Rightarrow n\in\left\{1;2;3;6\right\}\)
Lại có: m + 7n = 2n + 5 + 7n = 9n + 5 (1)
Lần lượt thay các giá trị tìm được của n vào (1) ta thấy n = 2 thỏa mãn
=> m = 2.2 + 5 = 9
Vậy m = 9; n = 2 thỏa mãn đề bài
?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????////////????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
a) Gọi \(\:ƯCLN\) của \(n+2;n+3\) là d \(\Rightarrow n+2⋮d;n+3⋮d\)
\(\Rightarrow\left(n+3\right)-\left(n+2\right)⋮d\Leftrightarrow1⋮d\Rightarrow d=1;-1\)
\(\Rightarrow n+2;n+3NTCN\)
b) Gọi \(\:ƯCLN\) \(2n+3;3n+5\) là d \(\Rightarrow2n+3⋮d;3n+5⋮d\)
\(\Rightarrow3\left(2n+3\right)⋮d\Rightarrow6n+9⋮d\) và \(2\left(3n+5\right)⋮d\Rightarrow6n+10⋮d\)
\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)
\(\Rightarrow2n+3;3n+5NTCN\)
gọi d là ƯCLN(2n+3;n+1)
Ta có:n+1 chia hết cho d =>2n+2chia hết cho d(1)
2n+3 chia hết cho d(2)
Từ (1)(2)=>(2n+3)-(2n+2)chia hết cho d
hay 1 chia hết cho d
Vậy d=1=>2n+3 và n+1 là hai số nguyên tố cùng nhau(đpcm)
Gọi ƯCLN(7n+10;5n+7)=a
Ta có : 7n+10 chia hết cho a => 5(7n+10) chia hết cho a
=> 35n+50 chia hết cho a (1)
5n+7 chia hết cho a => 7(5n+7) chia hết cho a
=> 35n + 49 chia hết cho a (2)
Từ (1) và (2) suy ra (35n+50)-(35n+49) chia hết cho a
=> 1 chia hết cho a
=> 7n+10 và 5n+7 là 2 số nguyên tố cùng nhau
tick ủng hộ nha
Gọi UCLN(2n+5,n+3) là d
Ta có: 2n+5 chia hết cho d
n+3 chia hết cho d => 2(n+3) chia hết cho d => 2n+6 chia hết cho d
=> 2n+6 - (2n+5) chia hết cho d
=> 2n + 6 - 2n - 5 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> UCLN(2n+5,n+3) = 1
=> 2n+5 và n+3 là 2 số nguyên tố cùng nhau
goi d uoc chung cua hai so tren
theo tinh chat chia het ta co
[2(n+3)-(2n+5)] chia het cho d
1 chia het cho d
=> d =1
=> dpcm
\(16.4x=48\)
\(\Rightarrow4x=\frac{48}{16}\)
\(\Rightarrow4x=3\)
\(\Rightarrow x=\frac{3}{4}\)
\(\left|x-2\right|+1=5\)
\(\Rightarrow\left|x-2\right|=5-1\)
\(\Rightarrow\left|x-2\right|=4\)
\(\Rightarrow\orbr{\begin{cases}x-2=-4\\x-2=4\end{cases}}\)
\(\text{* Trường hợp : }x-2=-4\)
\(\Rightarrow x=-4+2\)
\(\Rightarrow x=-2\)
\(\text{* Trường hợp : }x-2=4\)
\(\Rightarrow x=4+2\)
\(\Rightarrow x=6\)
\(\text{Vậy }x\in\left\{-2;6\right\}\)