Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK a>= 1
Đặt A = \(\sqrt{a+2\sqrt{a-1}}\)+ \(\sqrt{a-2\sqrt{a-1}}\)
= \(\sqrt{a-1+2\sqrt{a-1}+1}\)+ \(\sqrt{a-1-2\sqrt{a-1}+1}\)
= \(\sqrt{\left(\sqrt{a-1}+1\right)^2}\)+ \(\sqrt{\left(\sqrt{a-1}-1\right)^2}\)
= \(\sqrt{a-1}\)+ 1 + |\(\sqrt{a-1}\)- 1|
Nếu a>=2 thì A = \(\sqrt{a-1}\)+1 + \(\sqrt{a-1}\)-1 = 2\(\sqrt{a-1}\)
Nếu a < 2 thì A= \(\sqrt{a-1}\)+ 1 +1 - \(\sqrt{a-1}\)=2
1)\(\sqrt{x-2+2\sqrt{x-3}}\)=\(\sqrt{(x-3)+2\sqrt{x-3}+1}=\sqrt{(\sqrt{x-3}+1)^2}=\sqrt{x-3}+1 \)
2)\(\sqrt{x-1-2\sqrt{x-2}}=\sqrt{x-2-2\sqrt{x-2}+1}=\sqrt{(\sqrt{x-2}-1)^2}=\sqrt{x-2}-1\)
Bạn xem lại đề bài:
Giải thích:
Nếu x = 1/3 và y = 1
Ta có:
P ( 1/3, 1 ) = (\(9.\left(\frac{1}{3}\right)^2.1^2+1^2-6.1.\frac{1}{3}-2+1=-1< 0\)
a: Xét (O) có
ΔAEB nội tiếp
AB là đường kính
Do đó: ΔAEB vuông tại E
=>AE\(\perp\)MB tại E
Xét tứ giác MCAE có \(\widehat{MCA}+\widehat{MEA}=90^0+90^0=180^0\)
nên MCAE là tứ giác nội tiếp
b: Xét (O) có
ΔBFA nội tiếp
BA là đường kính
Do đó: ΔBFA vuông tại F
Xét ΔBEA vuông tại E và ΔBCM vuông tại C có
\(\widehat{EBA}\) chung
Do đó: ΔBEA~ΔBCM
=>\(\dfrac{BE}{BC}=\dfrac{BA}{BM}\)
=>\(BE\cdot BM=BA\cdot BC\left(1\right)\)
Xét ΔBFA vuông tại F và ΔBCN vuông tại C có
\(\widehat{FBA}\) chung
Do đó: ΔBFA~ΔBCN
=>\(\dfrac{BF}{BC}=\dfrac{BA}{BN}\)
=>\(BF\cdot BN=BA\cdot BC\left(2\right)\)
Từ (1) và (2) suy ra \(BE\cdot BM=BF\cdot BN\)